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Abstract

Constrained Policy Synthesis:
Riemannian Flows, Online Regulation, and Distributed Games

Shahriar Talebi

Chair of the Supervisory Committee:

Professor Mehran Mesbahi

William E. Boeing Department of Aeronautics & Astronautics

This dissertation makes contributions to decision-making processes in both cooperative

and non-cooperative environments, spanning several domains from constrained and large-

scale dynamical systems to network games and learning for control and estimation prob-

lems. First, we examine linearly constrained policy optimization over stabilizing controllers,

utilizing a Riemannian metric inherent to optimal control problems. We propose a novel

Newton-type algorithm that leverages the manifold’s second-order geometry to ensure local

convergence, demonstrating promising results in Structured and Output Linear Quadratic

Regulators (LQR) problems. Additionally, we present a distributed model-free policy it-

eration tailored for large networks of homogeneous systems. This algorithm enables the

development of stabilizing distributed feedback controllers through a data-driven approach

and the use of a learned stability margin. Addressing online regulation of partially unknown

unstable linear systems, we introduce the Data-Guided Regulation (DGR) synthesis proce-

dure, revealing novel geometric and system-theoretic properties while effectively regulating

the system’s states. Furthermore, we explore distributed learning in network games using

dual averaging, achieving sublinear regret bounds by optimizing global objectives composed

of local objective functions and considering network structures. Lastly, we investigate opti-

mal filtering policies for linear systems with unknown noise covariance matrices using noisy



output data, minimizing prediction error through stochastic policy optimization and ensuring

theoretical guarantees for biased gradients and stability constraints.
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Chapter 1

SUMMARY OF RESEARCH

Herein, we provide a summary of contributions presented in this dissertation. In Chap-

ter 2, the focus is on linearly constrained policy optimization over the manifold of Schur

stabilizing controllers, where a Riemannian metric naturally emerging in optimal control

problems is employed. The second-order geometry of the manifold is studied, leading to

a Newton-type algorithm with local convergence guarantees. This algorithm leverages the

inherent geometry, even without the exponential mapping or a numerically tractable re-

traction. Two well-known constrained optimal control problems are then addressed, and

numerical examples demonstrate the performance of the proposed approach.

Chapter 3 addresses the challenge of controlling large-scale networked systems. A dis-

tributed model-free policy iteration algorithm is proposed for designing feedback mechanisms

in large networks of homogeneous systems. The algorithm utilizes an underlying information-

exchange graph, allowing the distributed controller to synthesize a feedback signal based on

data obtained from a small subgraph. The approach includes a learning phase and a stabil-

ity margin is learned from data. The methodology is evaluated through distributed control

scenarios with modeling errors.

Chapter 4 focuses on online regulation of partially unknown linear systems without prior

access to an initial stabilizing controller or persistently exciting (PE) input-output data.

The notion of “regularizability” is introduced and characterized, along with the Data-Guided

Regulation (DGR) synthesis procedure. Leveraging only the knowledge of the input matrix,

DGR regulates the system while generating informative data for data-driven stabilization or

system identification. The analysis is related to the spectrum and the “instability number”
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of the underlying linear system.

In Chapter 5, a distributed no-regret learning algorithm for network games is proposed

using the primal-dual method of dual averaging. The algorithm considers a scenario where

each player optimizes a global objective formed by local objective functions on a commu-

nication graph. Regret analysis is provided for a deterministic network with two teams,

and the correlation between the rate of convergence and network structure/connectivity is

highlighted. Illustrative examples demonstrate the algorithm’s performance.

Chapter 6 addresses learning the optimal filtering policy (Kalman gain) for a linear

system with unknown noise covariance matrices using noisy output data. The problem is

formulated as stochastic policy optimization, aiming to minimize the output prediction error.

Convergence analysis of the stochastic gradient descent algorithm is conducted, considering

biased gradients and stability constraints. Error bounds that scale logarithmically with prob-

lem dimension are derived, leveraging tools from linear system theory and high-dimensional

statistics.
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Chapter 2

POLICY OPTIMIZATION OVER SUBMANIFOLDS
OF STABILIZING CONTROLLERS

In this chapter, we study the linearly constrained policy optimization over the manifold

of Schur stabilizing controllers, equipped with a Riemannian metric that emerges naturally

in the context of optimal control problems. We provide extrinsic analysis of a generic con-

strained smooth cost function, which then, facilitates subsuming any such constrained prob-

lem into this framework. By studying the second order geometry of this manifold, we provide

a Newton-type algorithm with local convergence guarantees that exploits this inherent ge-

ometry without using the exponential mapping and even in the absence of a numerically

tractable retraction. It hinges upon the developed stability certificate and the linear struc-

ture of the constraints. We then apply our methodology to two well-known constrained

optimal control problems. Finally, several numerical examples showcase the performance of

our approach.

2.1 Introduction

Recently, direct Policy Optimization (PO) for different variants of LQR problems have at-

tracted considerable attention due to its fundamental modeling advantages for feedback dy-

namical systems; PO for linearly constrained LQR problems ( e.g., the state-feeback SLQR

and OLQR), however, is less explored due to the complicated geometry of the feasible set and

the non-convexity of the cost function itself. While reparameterization of the LQR problem

to a convex setup is possible for unconstrained cases [Mohammadi et al., 2021b], in general,

trivial constraints directly on the policy may become completely nontrivial and non-convex
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after reparameterization1. Also, for constrained optimal LQR problems, the domain is gen-

erally non-convex [Ackermann, 1980], it may be disconnected (exponentially in number of

states) with potentially multiple local minima on each component, and there is no guarantee

that the first-order stationary points be necessarily local minima ( e.g.,see [Feng and Lavaei,

2019] for SLQR problem in continuous-time setup).

Finding the linear output-feedback policy directly for the OLQR problem was first ad-

dressed in [Levine and Athans, 1970] but it requires solving nonlinear matrix equations on

each iteration. Since then, there has been on-going research efforts to approach this prob-

lem from different angles [Anderson and Moore, 2007; Mäkilä and Toivonen, 1987; Moerder

and Calise, 1985; Toivonen, 1985; Mårtensson and Rantzer, 2009; Rautert and Sachs, 1997;

Iwasaki et al., 1994; Toivonen and Mäkilä, 1987]. In particular, first and second order meth-

ods have been adopted for solving SLQR and OLQR problems (see e.g., [Toivonen and

Mäkilä, 1987; Mäkilä and Toivonen, 1987] and references therein); However, these methods

1) often utilize backtracking line-search techniques at each iteration, 2) do not provide ex-

plicit guarantees for convergence, 2) do not exploit the inherent non-Euclidean geometry, 4)

and finally lack a unifying setup that can handle any such linear constraint.

Recently, the state-feedback LQR problem has been studied through the lens of first

order methods, in both discrete-time [Bu et al., 2019a] and continuous-time [Bu et al.,

2020a] setups. This point of view was initiated when the LQR cost was shown to be gradient

dominant [Fazel et al., 2018], which facilitates a global convergence guarantee of first order

methods for this problem—despite of non-convexity. Since then, PO using first order methods

has been investigated for variants of LQR problem such as OLQR [Fatkhullin and Polyak,

2020], model-free setup [Mohammadi et al., 2021a] and risk-constrained LQR [Zhao et al.,

2023] just to name a few. The gradient dominant property, however, is only known to be valid

with respect to the global optimum of the unconstrained case, and is not necessarily expected

for the general constrained LQR problems. By merely using the first order information of

1There are special exceptions like the quadratic invariance class [Rotkowitz and Lall, 2006].
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the cost function, PG techniques—whenever the projection is possible—can be shown to

converge to first order stationary points but with a sublinear convergence rate ( e.g., see

[Bu et al., 2019a] for SLQR problem). A sublinear rate may considered to be too slow

from a practical point of view, particularly when the second order information of the LQR

cost is not out of reach. Despite the complications arising from the non-convexity and even

non-connectedness of the feasible set for general constrained optimal control problems, one

may consider developing faster convergent algorithms that could facilitate an accelerated

exploration of the feasible set for local optima. Note that, the structure on the policy

can be enforced through some regularization; however, this approach merely promotes the

constraints and does not address the problems considered here because the constraints are

prescribed as a hard requirement for feasibility of the solution ( e.g., see [Park et al., 2020] for

promoting sparsity for SLQR problem). Here, we aim to utilize the second order information

of the cost function to improve the convergence rate, and at the same time, subsume any

linear constraint into a unified setup; e.g., such that the SLQR and OLQR problems can be

handled correspondingly.

By ignoring the geometry of the problem, one may aim to optimize for the linearly

constrained LQR cost by directly utilizing first or second order methods. Since the domain

is non-convex, this might be possible by incorporating an Armijo-type backtracking line-

search or requiring the initial condition to be close to local optima. Here, we preclude from

incorporating any line-search in order to exploit the full potential of the geometry inherent to

LQR cost. Adding any back-tracking technique is then considered as an immediate extension

to our setup. Also, we aim to pave the road for future consideration of interesting system

theoretic criteria that result in nonlinear constraints directly on the feedback policy—which is

simplified tremendously if seen through the intrinsic geometry of the problem as investigated

here (see §2.8 for an example).

Generally, the second order behavior of the cost function can be utilized in order to

obtain a descent direction—as in the Newton method—as long as the “Hessian” stays positive

definite. But, this second order behavior can be computed using distinct geometries; e.g.,
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−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−3

−2

−1

0

1
S̃

h = f |S̃
Hessh � 0

Hessh � 0

minimum

Figure 2.1: The actual submanifold S̃ of diagonal state-feedback stabilizing controllers for a

system with 2 states and 2 inputs; superimposed with 1) the level-sets of the constrained LQR

cost (h), and the regions on which its “Hessian” is positive definite with respect to 2) the

inherent Riemannian geometry (Hessh) and 3) the Euclidean geometry (Hessh), respectively;

S̃ is covered by the region on which Hessh ≻ 0. See Example 2.18 in §2.7 for more details.
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with respect to the usual Euclidean geometry (especially for linearly constrained problems) or

more interestingly with respect to the non-Euclidean geometry inherent to the cost function

itself. A simple—but actual—example of this comparison is depicted in Figure 2.1 over

the set of “diagonally” constrained stabilizing controllers (denoted by S̃)—which turns out

to be non-convex even for this simple example consisting of two inputs and two states.

More specifically, it is the intersection of the 4-dimensional set of stabilizing controllers

with a 2-d plane defining the diagonal constraint. Note how the “Euclidean Hessian” of

the constrained LQR cost (denoted by Hessh) remains positive definite on a much smaller

subset of S̃—especially on the vicinity of the minimum (denoted by minimum). Therefore,

one would expect that the neighborhood of minimum, on which the Newton updates using

Euclidean geometry is guaranteed to converge, should be relatively small. However, if second

order behavior of the LQR cost is considered through the lens of the relevant Riemannian

geometry, its “Riemannian Hessian” (denoted by Hessh) captures the behavior of the cost

function effectively, such that it remains positive definite on a much larger domain—compare

to Hessh. Therefore, one expect a significant difference in performance of second order

optimization algorithms utilizing these two distinct geometries.

The machinery developed in the literature for optimization over manifolds heavily de-

pends on access to either the exponential mapping [Gabay, 1982; Smith, 1994] or a retraction

from its tangent bundle onto the manifold itself [Absil et al., 2009]. However, due to the

complicated geometry of the manifold of Schur stabilizing controllers, the exponential map-

ping is computationally burdensome and a more feasible retraction is not generally available.

On the other hand, many interesting constraints for optimal LQR problems (such as OLQR

or SLQR) inherits a linear structure. Therefore, it is pertinent to ask if we can still exploit

the intrinsic non-Euclidean geometry— e.g., as induced by the quadratic cost and linear

dynamics in optimal control problems and illustrated in Figure 2.1—while circumvent the

absence of a computationally feasible retraction.

In this chapter, we consider a general optimization problem over the set of linearly con-

strained stabilizing controllers, which then, can easily be particularized for different con-
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strained optimization problems. We introduce a Newton-type algorithm that utilizes both

the inherent Riemannian geometry as well as the linear structure of the constraints, and

provide convergence analysis to the local minima. Here, in the absence of any computa-

tionally feasible retraction, we obtain the so-called stability certificate that—together with

the linear structure of the constraints—substitute the roll of a retraction by ensuring the

feasibility of the next iterate. Finally, as the unit stepsize may not be possible in general,

we guarantee a linear convergence rate which will eventually becomes quadratic. Finally, we

provide applications of the proposed methodology to the well-known state-feedback SLQR

and OLQR problems, followed by numerical examples. Our contributions are as follows:

• We study the second order geometry of the manifold of stabilizing controllers induced

by a pertinent Riemannian metric and its associated connection2.

• We provide extrinsic analysis for first and second-order behavior of a generic smooth

cost function constrained to a Riemannian submanifold. This, in turn, allows for a

generic treatment of constrained optimization problems on the manifold of stabilizing

controllers.

• We introduce a Newton-type algorithm with convergence guarantees that exploits the

inherent Riemannian geometry in the absence of the exponential mapping or any re-

traction which hinges upon the developed stability certificate and the linear structure

of constraints.

• We apply our methodology to SLQR and OLQR problems by first, computing the

second order behavior of the LQR cost with respect to the Riemannian connection,

and then, explicating the solution to Newton equation for each case in this geometry.

• While our approach allows for considering any choice of connection, here we focus on

2A connection in a tangent bundle can be viewed as a generalization of directional derivative in non-
Euclidean geometry; see [Lee, 2018].
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the acossiated Riemannian connection and its comparison to the ordinary Euclidean

connection.

• Finally, we provide several numerical examples to showcase the performance and advan-

tages of our proposed methodology that exploits this intrinsic geometry by leveraging

on the stability certificate.

The rest of the chapter is organized as follows. In §2.2, we introduce the generic problem

setup. We provide the analysis of this problem through the lens of differential geometry in

§2.3. Next, we present the algorithm and its convergence analysis in §2.4 for optimization on

submanifolds of stabilizing controllers with linear structure. Then, its applications to SLQR

and OLQR problems are presented in §2.6. Finally, we provide numerical examples in §2.7.

Notation: The space of m × n matrices over the real field is denoted by M(m× n,R)

with the trivial smooth structure determined by the atlas consisting of the single chart

(M(m× n,R), vec), where vec : M(m× n,R) → Rmn denotes the vectorization operator

which returns a vector obtained by stacking the columns of a matrix—from left to right—

on top of one another. We denote the transpose operator by (.)⊺. The trace and spectral

radius of a square matrix is denoted by tr [.] and ρ(.), respectively. The Loewner partial

order of symmetric positive (semi-)definite matrices is denoted by ≻ (≽). We use the same

notation to denote positive (semi-)definiteness of 2-tensor fields. The set of positive integers

less than or equal to m is denoted by [m]. We denote the subset of stability matrices by

M := {A ∈ M(n× n,R) | ρ(A) < 1} which is open in M(n× n,R), and define the “Lyapunov

map”

L :M×M(n× n,R)→ M(n× n,R)

that sends (A,Σ) to the unique solution Y of the following discrete Lyapunov equation

Y = AY A⊺ + Σ, (2.1)



10

which has the following infinite-sum representation

Y =
∞∑

i=0

AiΣ(A⊺)i. (2.2)

If Σ ⪰ 0(≻ 0), then Y ⪰ 0(≻ 0). Also, suppose Σ ⪰ 0 then, Y ≻ 0 if and only if (A,Σ1/2)

is controllable 3. Finally, for manifolds we follow the notation and results in [Lee, 2013] and

[Lee, 2018] unless stated explicitly.

2.2 Problem Setup

Given a stabilizable pair (A,B) with A ∈ M(n× n,R) and B ∈ M(n×m,R), we define the

set of stabilizing controllers as

S := {K ∈ M(m× n,R) | ρ(A+BK) < 1}.

Later, we also introduce a non-Euclidean geometry over S using a metric arising naturally

in the context of optimal control problems. We are often interested in controller gains K

that lie on a relatively “simple” subset K of M(m× n,R), such that S̃ := K ∩ S is an

embedded submanifold of S. A common example of this is a linear subspace of M(m× n,R)

which characterizes a prescribed sparsity pattern for the admissible controller gains. Another

example happens in optimal output-feedback control problems which will be considered in

Section 2.6.5.

In this chapter we are concerned with the following optimization problem:

min
K

f(K) ∈ C∞(S) (2.3)

s.t. K ∈ S̃,

where S̃ is an embedded submanifold of S, and especially when it is endowed with a lin-

ear structure. Later, we intend to use this linear structure together with an appropriate

3See [Gajic and Qureshi, 2008] and references therein for the existence, uniqueness and infinite-sum
representation of the solution to the Lyapunov equation.
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Riemannian geometry of S to circumvent the absence of a (computationally feasible) global

retraction from TS onto S (or S̃)—which is due to the complicated geometry of S.

In order to handle a generic embedded submanifold S̃, we study the behavior of the

restricted function h := f |S̃ from an extrinsic point of view, which then can be applied to

any such submanifold. Also, in most practical regimes, the function f is not convex and the

constraint submanifold S̃ might be disconnected. Thus, here we focus on local convergence

results that aims to exploit the inherent geometry of the problem in order to achieve fast

convergence rates with relatively reasonable computational complexity. Finally, the existence

of local (or global) optima for the general constrained minimization problem in (2.3), is out

of scope of this work and thus, is assumed a priori throughout this chapter.

2.3 Optimization on Submanifolds of S and its Geometry

In order to address this problem, we analyze the domain manifold using machinery borrowed

from differential geometry. Note that embedded submanifolds S̃ endowed with a linear struc-

ture, can be investigated without using such machinery. However, neither the corresponding

results can be generalized to submanifolds with “nonlinear” structure, nor the geometry

induced by the cost function can be exploited for the optimization algorithm.

Before we proceed, it is worth noting that if we were to directly apply the results developed

for optimization over the manifolds (such as [Absil et al., 2009]) it would have been necessary

to access a retraction from the tangent bundle T S̃ onto S̃. Unfortunately, in general such

mapping is not available here, due to the complicated geometry of S. Additionally, we will

see that the Riemannian exponential map, with respect to the inherent geometry associated

with optimal control problems, involves a system of ODE’s whose coefficients are solutions

to different Lyapunov equations. Therefore, even though it is possible to compute the expo-

nential mapping, in general it is hard to justify its computational complexity. Nonetheless,

we show how we can circumvent this issue if the Riemannian tangential projection onto T S̃
is available—which is a rather computationally feasible operator in general.



12

2.3.1 Analysis of the domain manifold

It is known that S is contractible [Bu et al., 2019b], and unbounded when m ≥ 2 with

the topological boundary ∂S = {K ∈ M(m× n,R) | ρ(A + BK) = 1} as a subset of

M(m× n,R). Also, S is open in M(m× n,R) (which is a consequence of continuity of

eigenvalues for matrices with smooth entries4 and a passing to the quotient argument), and

therefore a submanifold without boundary.5

In this chapter we focus on S as a manifold on its own. Since S can be covered by a

single smooth chart, the tangent bundle of S, denoted by TS, is diffeomorphic to S × Rmn

which is also diffeomorphic to S ×M(m× n,R), under the map IdS × vec−1. We refer to

this composition of diffeomorphisms as “the usual identification of the tangent bundle” (or

TKS ∼= M(m× n,R) at any point K ∈ S) if we need to identify any element of TS (or TKS).

In particular, let us denote the coordinates of this global chart by (xi,j) for S, its associated

global coordinate frame by ( ∂
∂xi,j

) or simply (∂i,j), and its dual coframe by (dxi,j), where

i = 1, . . . ,m and j = 1, . . . , n. Also, the (k, ℓ)-th element of any matrix A ∈ M(m× n,R) is

denoted by [A]k,ℓ or [A]k,ℓ depending on viewing A as a point or a tangent vector, respectively.

Then, for example, under the usual identification of tangent bundle, for any fixed i and j we

identify ∂i,j as a matrix in M(m× n,R) whose elements are [∂i,j]
k,ℓ = 1 if k = i and ℓ = j,

and otherwise [∂i,j]
k,ℓ = 0. We also use the Einstein summation convention as explained in

[Lee, 2018] for double indices; for example, we write xi,j∂i,j to denote
∑m

i=1

∑n
j=1 x

i,j∂i,j.

Before we proceed with studying the domain manifold, we present a technical lemma that

will be used frequently throughout the chapter.

Lemma 2.1. The subset M is an open submanifold of M(n× n,R), the Lyapunov map

L :M×M(n× n,R)→ M(n× n,R), is smooth and its differential acts as follows

dL(A,Q)[E,F ] = L
(
A,E L(A,Q)A⊺ + AL(A,Q)E⊺ + F

)
,

4See Theorem 5.2 in [Serre, 2010], or Theorem 5.1 in [Kato, 2013].

5Cf. [Ohara and Amari, 1992] for another differential geometric study of the set of stabilizing controllers
in continuous-time setup.
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for any (E,F ) ∈ T(A,Q)(M×M(n× n,R)) with the identification that follows by T(A,Q)(M×
M(n× n,R)) ∼= TAM⊕TQM(n× n,R) ∼= M(n× n,R)⊕M(n× n,R). Furthermore, for any

A ∈M and Q,Σ ∈ M(n× n,R) (not necessarily symmetric) we have

tr [L(A⊺, Q)Σ] = tr [QL(A,Σ)] .

We refer to the last property of the Lyapunov map involving a trace as “Lyapunov-trace ”

property.

We can show that that many optimal control problems such as SLQR and OLQR (and

even Linear Quadratic Gaussian (LQG) control) share a similar cost structure, as

f(K) =
1

2
tr [PKΣK ] ,

where PK = L(A⊺
K , Q+K⊺RK) with AK := A+BK, and

ΣK := Σ1 +K⊺Σ2K, (2.4)

for some Σ1,Σ2 ⪰ 0 with appropriate dimensions. Motivated by this, we define a covariant

2-tensor field on S which will be proved to be a Riemannain metric. For that, let X(S)

denote the set of all vector fields over S.

Lemma 2.2. Let ⟨., .⟩Y : X(S)× X(S)→ C∞(S) denote the mapping that, under the usual

identification of the tangent bundle, sets

⟨V,W ⟩Y
∣∣
K

:= tr [(VK)⊺ WK L(AK ,ΣK)] , ∀K ∈ S,

for any V,W ∈ X(S). Then, this mapping is well-defined and induced by a smooth symmetric

covariant 2-tensor field.

Now, let T 2(T ∗S) denote the bundle of covariant 2-tensor fields on S and define g : S →
T 2(T ∗S) to be its smooth section that sends K to ⟨., .⟩Y

∣∣
K

. Then, g is in fact a Riemannian

metric under mild conditions formalized below.
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Proposition 2.3. If (AK ,Σ
1/2
K ) is controllable and ΣK ⪰ 0 for all K ∈ S, then the tuple

(S, g) is a Riemannian manifold, and with respect to the dual coframe (dxi,j) we have g =

g(i,j)(k,ℓ)dx
i,j ⊗ dxk,ℓ with each g(i,j)(k,ℓ) ∈ C∞(S) satisfying

g(i,j)(k,ℓ)(K) =





[YK ]ℓ,j, if i = k,

0, otherwise,

where YK := L(AK ,ΣK). Furthermore, the inverse “matrix” g(i,j)(k,ℓ) satisfies

g(i,j)(k,ℓ)(K) =





[Y −1
K ]ℓ,j, if i = k,

0, otherwise.

Remark 2.4. The premise of Proposition 2.3 is satisfied if ΣK ≻ 0 for all K ∈ S; e.g., when

Σ1 ≻ 0 and Σ2 ⪰ 0.

2.3.2 Riemannian Connection on TS

First, consider a Riemannian submanifold (S̃, g̃) with g̃ := ι∗S̃g where ι∗S̃ denotes the pull-back

by inclusion. In order to understand the second order behavior— i.e. the “Hessian”—of a

smooth function on S̃, we need to study the notion of connection in TS, and then explain

how that would be related to the one in the tangent bundle T S̃. Recall that, by Fundamental

Theorem of Riemannian Geometry, there exists a unique connection∇ : X(S)×X(S)→ X(S)

in TS that is compatible with g and symmetric; i.e., for all U, V,W ∈ X(S) we have:

• ∇U ⟨V,W ⟩Y = ⟨∇UV,W ⟩Y + ⟨V,∇UW ⟩Y ,

• ∇UV −∇VU ≡ [U, V ],

where [V,W ] ∈ X(S) denotes the Lie bracket of vector fields V and W .

Note that, merely the restriction of ∇ to X(S̃)×X(S̃) would not be a connection in T S̃
because its range does not necessary lie in X(S̃). However, we can denote the (Riemannian)

tangential and normal projections by π⊤ : TS|S̃ → T S̃ and π⊥ : TS|S̃ → N S̃, respectively,
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with N S̃ indicating the normal bundle of S̃. Subsequently, by The Gauss Formula, if ∇̃ :

X(S̃) × X(S̃) → X(S̃) denotes the Riemannian connection in the tangent bundle T S̃, then

we can compute it as follows:

∇̃UV = π⊤∇UV, (2.5)

for any U, V ∈ X(S̃), where they are extended arbitrarily to smooth vector fields on a

neighborhood of S̃ in S.

Next, for computational purposes, we would like to obtain the Christoffel symbols asso-

ciated with g (denoted by Γ
(i,j)
(k,ℓ)(p,q)) and thus completely determine the connection ∇.

Proposition 2.5. Consider a point K ∈ S and, under the usual identification of TS, define
6

dYK(p, q) := L
(
AK , B∂(p,q)YKA

⊺
K + AKYK∂

⊺
(p,q)B

⊺ + ∂⊺(p,q)Σ2K +K⊺Σ2∂(p,q)

)
,

for each (p, q) ∈ [m]× [n] where YK = L(AK ,ΣK). Then, the Christoffel symbols associated

with the metric g can be obtained in the global coordinate frame (∂(i,j)) as follows:

• If k ̸= i ̸= p ̸= k, then Γ
(i,j)
(k,ℓ)(p,q)(K) = 0.

• If k = i ̸= p, then

Γ
(i,j)
(k,ℓ)(p,q)(K) =

1

2

[
dYK(p, q)Y −1

K

]
(ℓ,j)

.

• If p = i ̸= k, then

Γ
(i,j)
(k,ℓ)(p,q)(K) =

1

2

[
dYK(k, ℓ)Y −1

K

]
(q,j)

.

• If p = k ̸= i, then

Γ
(i,j)
(k,ℓ)(p,q)(K) = −1

2

∑

s

[dYK(i, s)](q,ℓ) [Y −1
K ](s,j).

6In the proof, we show that dYK(p, q) = ∂(p,q)YK , denoting the action of the tangent vector ∂(p,q)|K on

the map K → (AK ,ΣK)
L−→ YK .
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• Finally, if p = k = i, then

Γ
(i,j)
(k,ℓ)(p,q)(K) =

1

2

∑

s

(
[dYK(i, ℓ)](q,s) + [dYK(i, q)](ℓ,s) − [dYK(i, s)](q,ℓ)

)
[Y −1
K ](s,j).

Remark 2.6. Note that, with respect to the global coordinates of (S, g,∇), the geodesic

equation is a system of (mn) second-order ordinary differential equations whose varying co-

efficients involve (mn)3 Christoffel symbols Γ
(i,j)
(i,ℓ)(i,q) as obtained above. Therefore, computing

the Riemannian Exponential mapping is computationally burdensome and this is one of the

reasons we avoid using it as a retraction.

2.3.3 Extrinsic analysis of a smooth function constrained to a Riemannian submanifold

In this subsection, we study the the gradient and Hessian operator of a constrained smooth

function from an extrinsic point of view, which is yet to be defined. In other words, we

consider (S̃, g̃) as a Riemannian submanifold of (S, g) where g̃ = ι∗S̃g with ι∗S̃ denoting the

pull-back by inclusion of S̃ into S. Then, by considering any smooth function f on S, we

can define its restriction to S̃ as

h := f |S̃ ,

and ask how its gradient and Hessian operator is related to that of f . For proceeding to

answer this question, we utilize the Riemannian connection in order to analyze the second

order behaviour of f (or that of h).

Recall from [Lee, 2018] that the gradient of f with respect to the Riemannian metric g,

denoted by gradf ∈ X(S), is defined to be the unique vector field satisfying

⟨V, gradf⟩Y = V f,

for any V ∈ X(S). Additionally, for any normal vector field N ( i.e. a smooth section of N S̃ )

the “Weingarten map in the direction of N” is denoted by WN : X(S̃)→ X(S̃) which defines

a smooth bundle homomorphism from T S̃ to itself. Finally, define the “Hessian operator”

of f ∈ C∞(S) as the map Hessf : X(S)→ X(S) defined by

Hessf [U ] := ∇Ugradf,
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for any U ∈ X(S). Note that we use the same notation to denote the gradient and Hessian

operator defined on the submanifold S̃; for further discussions regarding the Hessian operator

refer to Section 2.3.4. Next, we formalize this abstract extrinsic examination as follows.

Proposition 2.7. Suppose S̃ is an embedded Riemannian submanifold of S both equipped

with their Riemannian connections. Let f ∈ C∞(S) be any smooth function, then h := f |S̃
is smooth on S̃ and we have

gradh = π⊤ (gradf |S̃).

Furthermore, under usual identification of T S̃ ⊂ TS, for any V ∈ X(S̃) we have

Hessh[V ] = π⊤ (Hessf [V ]
∣∣
S̃) + Wπ⊥ (gradf |S̃)(V ),

where V is arbitrarily extended to smooth vector fields on a neighborhood of S̃ in S.

2.3.4 More on the Hessian Operator

The Hessian operator (denoted by Hessf) as introduced in Section 2.3.3 is well-defined and

the value of Hessf [U ] at any K ∈ S depends only on UK due to this property for the

connection. Note that for any U,W ∈ X(S),

⟨Hessf [U ],W ⟩Y = U ⟨gradf,W ⟩Y − ⟨gradf,∇UW ⟩Y
= U(Wf)− (∇UW )f

= W (Uf)− (∇WU)f (2.6)

where the first equality is because the Riemannian connection is compatible with the metric,

the second equality is by definition of gradf , and the last equality is due to symmetry of

the Riemannian connection. Thus, by (2.6) we can conclude that the Hessian operator is

self-adjoint, i.e.

⟨Hessf [U ],W ⟩Y = ⟨U,Hessf [W ]⟩Y .

Similarly, we can define Hessh for any smooth function h ∈ C∞(S̃) where we consider

the submanifold S̃ ⊂ S with the induced Riemannian metric and associated Riemannian

connection of S.
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Next, for the computational purposes, we would like to also introduce the “covariant

Hessian of f” with respect to g, denoted by ∇2f . It is a 2-tensor field obtained by taking

total covariant derivative of f twice. The Riemannian connection is symmetric so is the

covariant Hessian. Also, it is easy to see that covariant Hessian and Hessian operator are

related as follows

∇2f [W,U ] = ∇U∇Wf − (∇UW )f = ⟨Hessf [U ],W ⟩Y , (2.7)

where the last equality follows by (2.6).

Furthermore, recall that gradf = (df)♯, where ♯ denote the index raising operator called

the “sharp” operator. On the other hand, Hessf : X(S)→ X(S) can be viewed as the total

covariant derivative of gradf , i.e. Hessf = ∇gradf . But then

Hessf = ∇(df)♯ = (∇(df))♯ =
(
∇2f

)♯
, (2.8)

where the equality in the middle follows by the fact the index raising commute with the

covariant derivative operator, and the last equality is due to the definition of connection for

a smooth function f ∈ C∞(S). Note that in (2.8), the index raising refer to the second

argument of ∇2f . However, as the covariant Hessian of any smooth function is a symmetric

2-tensor field, the index raising could be respect to any of the entries. Finally, similar

definitions and relations as discussed above are available for h as a smooth function on the

embedded Riemannian submanifold S̃ with the induced metric and corresponding connection,

which are omitted for brevity.

2.3.5 The choice of connection

On the manifold (S, g,∇), computing the exponential map requires finding solution to a

system of ODE’s of dimension (mn). Furthermore, it does not necessarily provide an ex-

ponential map of a submanifold S̃ (unless it happens to be totally geodesic). To avoid the

computation complexity of Riemannian exponential map, it seems reasonable to perform

updates by using simpler “retractions” from tangent bundle to the manifold (such as the one
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defined in [Absil et al., 2009]), however, in general we do not have access to such a retraction

in our setup. Another computational complexity of utilizing the Riemannian connection as-

sociated with the Riemannian metric g is the (mn)2-number of Lyapunov equations involved

in obtaining the Christoffel symbols at each point.

On the other hand, for the applications in which the submanifold appears as S̃ = S ∩ K
where K is an affine subspace of M(m× n,R), it might seem reasonable to consider the

ambient manifold (S, g,∇) where ∇ refers to the so-called “Euclidean connection”; i.e. the

connection whose coefficients (with respect to the global coordinates) all vanish (Γ
i,j

(k,ℓ)(p,q) ≡ 0

on S). This results in a simpler “Hessian” operator which, however, does not respect the

geometry of (S, g) simply because ∇ is not compatible with the metric g—in contrast to

its associated Riemannian connection. Nonetheless, for completeness, we also define the

“Euclidean Hessian operator” of f ∈ C∞(S) as the map Hessf : X(S)→ X(S) defined by

Hessf [U ] := ∇Ugradf,

for any U ∈ X(S). It enjoys similar properties as that of Hessf , but contains different

information about the second order behavior of f ( e.g., see Figure 2.1 for a comparison).

2.4 Algorithm: Riemannian Newton-type Policy Optimization (RNPO)

Here, we propose an algorithm for learning local optima of smooth cost functions, constrained

to submanifolds of S that are endowed with a linear structure; that is where S̃ = S ∩ K
where K entails a linear structure in M(m× n,R). We abstain from using the exponential

mapping (due to its computational complexity), in spite of the fact that no other retraction

from the tangent space onto the manifold S is known. Instead, we exploit this linear structure

together with an active stability certificate which guarantees stability of the next iteration

by adjusting the stepsize.

In what follows, we first introduce the stability certificate and then propose our algorithm.

We show how to use this certificate to determine stepsizes guaranteeing a linear convergence

rate, and more importantly, the existence of neighborhoods containing local minima on which



20

the algorithm reaches a quadratic rate of convergence.

2.4.1 The stability certificate and the algorithm

We know that S is open in M(m× n,R), nonetheless, we provide the following lemma which

quantifies this fact with respect to the problem parameters, which can be utilized later for

analysis of any generic iterative algorithm.

Lemma 2.8. Suppose K ∈ S and choose QK ∈ M(n× n,R) such that QK ≻ 0. Given any

direction G ∈ TKS ∼= M(m× n,R), if step-size η is small enough such that

0 ≤ η ≤ sK :=
λmin(QK)

2λmax (L(A⊺
K , QK)) ∥BG∥2

,

then K+ := K + ηG ∈ S and sK is referred to as the “stability certificate” at K.

Proof. Since K is stabilizing, for any such QK , there exists P ≻ 0 satisfying

P =L(A⊺
K , QK) = A⊺

K+PAK+ + L,

where

L =QK − ηG⊺B⊺PAK − ηA⊺
KPBG− η2G⊺B⊺PBG

≽QK − aA⊺
KPAK − (1 + 1/a)η2G⊺B⊺PBG

=(1 + a)(QK)− aP − (1 + 1/a)η2G⊺B⊺PBG,

for any a > 0. Now, by recalling the infinite sum representation of P and the fact that

QK ⪰ 0 we conclude that λmax(P ) ≥ λmax(QK) ≥ λmin(QK). Thus, we choose a as follows:

if λmax(P ) > λmin(QK) then choose it so that

1/2a+ 1 = λmax(P )/λmin(QK);

otherwise, choose it large enough such that a > 2η2∥BG∥22. Then, either way we must have

λmin(L) ≥ λmin(QK)/2−
[

2λ2max(P )

λmin(QK)
− λmax(P )

]
η2∥BG∥22.
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Therefore, if

|η| ≤ λmin(QK)/(2λmax(P )∥BG∥2)

then L > 0, implying that K+ is stabilizing by Lyapunov Stability Criterion.

Remark 2.9. The proceeding lemma also provides a “conditioning” of the optimization prob-

lem at hand in terms of system parameters A,B. In other words, for any choice of QK ≻ 0

at any K ∈ S, the quotient λmax (L(A⊺
K , QK))/λmin(QK) represents a condition number in-

dicating information about the manifold at K. In a sense, this is capturing properties of

the “Riemannian curvature” of (S, g,∇) where its precise characterization is deferred to our

future work.

Next, we propose an algorithm with convergence guarantees with at least a linear rate

(specially when the iterates are far away from the local optima) and eventually a Q-quadratic

rate (when it gets close enough to the local optima). The complication here is that we do not

have access to a retraction with a reasonable computational complexity (see Remark 2.6).

We claim that, starting close enough to a local minimum, a Newton-type method using

Riemannian metric and the Euclidean/Riemannian connection must converge quadratically

if one could have used stepsize η = 1. This is in fact due to the exponential mapping with

respect to the Euclidean connection that serves as a retraction with desirable properties.

However, the stability certificate suggest that at least away from the local minimum it might

not be possible to use such a large stepsize. Therefore, a stepsize rule is deduced—which

hinges on the stability certificate—and the algorithm is summarized in Algorithm 2.1.

Hereafter, we refer to the solution G ∈ TKS̃ of the following equation as the Newton

direction on the submanifold S̃:

HesshK [G] = −gradhK ,

where h = f |S̃ ; and similarly Euclidean Newton direction if Hessh is replaced by Hessh.
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Algorithm 2.1: Riemannian Newton-type Policy Optimization (RNPO)

1: Initialization: Problem parameters (A,B), the linear constraint K and an initial

feasible stabilizing controller K0 ∈ S̃ = S ∩ K
2: Choose a smooth mapping K → QK ≻ 0

3: For t ≥ 0, do

4: Solve for the Newton direction Gt on S̃:

HesshKt [Gt] = −gradhKt

5: Use QKt to obtain a stability certificate sKt

6: Compute step-size ηt:

ηt = min {sKt , 1}

7: Update:

Kt+1 = Kt + ηtGt

8: t← t+ 1

The update in Line 7 is possible due to the linear structure of S̃ induced by K. Furthermore, the Hessian

operator Hessh can be replaced by its Euclidean counterpart Hessh.
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2.5 Analysis of RNPO

Herein, we establish the local linear-quadratic convergence of RNPO algorithm on the sub-

manifold S̃ using differential geometric techniques [Lee, 2018; Absil et al., 2009; Gabay,

1982]. Herein, avoiding the exponential map induced by the Riemannian connection for

updating the iterates, and using stability certificate add another layer of complication for

convergence analysis. To proceed, we say K∗ is a critical point of h if gradhK∗ = 0 and it is

“nondegenerate” if HesshK∗ is nondegenerate, i.e.

⟨HesshK∗ [G], G⟩YK∗ = 0 =⇒ G = 0 ∈ TK∗S̃.

Lemma 2.10. Suppose K∗ is a nondegenerate local minimum of h := f |S̃ . Then gradhK∗ = 0

and there exists a neighborhood of K∗ on which Hessh is positive definite. Furthermore,

HesshK∗ = HesshK∗.

The next theorem provides a local convergence guarantee for RNPO algorithm.

Theorem 2.11. Suppose K∗ is a nondegenerate local minimum of h := f |S̃ over the sub-

manifold S̃ = S ∩K for some linear constraint K. Then, there exists a neighborhood U∗ ⊂ S̃
of K∗ with the following property: whenever K0 ∈ U∗, the sequence {Kt} generated by RNPO

remains in U∗ (therefore, is stabilizing), and it converges to K∗ at least at a linear rate and

eventually a quadratic rate.

Remark 2.12. The above theorem implies that there exist neighborhoods containing each

nondegenerate local minimum of the constrained cost function h on which the convergence of

RNPO is guaranteed. The usefulness of this result is that the initial iterate K0 is not required

to be in a (relatively much smaller) neighborhood of the optimality on which the step-size

η = 1 is feasible. Instead, by carefully incorporating the stability certificate as obtained

in Lemma 2.8, we can obtain a larger basin of attraction for optimality (see Figure 2.5 in

§2.7). Finally, even though the convergence rate is at least linear initially, as the algorithm

proceeds a quadratic convergence rate is guaranteed.
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2.5.1 Theoretical Analysis of the Results in §2.3

Proof of Lemma 2.1. Since ρ : M(n× n,R) → R is a continuous map, M is an open

subset of M(n× n,R) and thus an open submanifold. For each A ∈ M, by Lyapunov

Stability Criterion, there exists a unique solution Y to (2.1) which satisfies (2.2). But,

as for each A ∈ M the series converges, each element of Y can be written as a conver-

gent power series of elements of A and Σ. Therefore, each element of Y is a real analytic

function of several variables (as defined in [Krantz and Parks, 2002]) on the open subset

M×M(n× n,R) ⊂ M(n× n,R)2. So, we conclude that L is a well-defined smooth map.7

Next, under the identification in the premise, we can calculate

dL(A,Q)[E,F ] = dL(A,Q)[E, 0] + dL(A,Q)[0, F ].

But L is linear in the second variable, so dL(A,Q)[0, F ] = L(A,F ). Also since M is open,

for small enough ε, γ : [0, ε] →M×M(n× n,R) with γ(t) = (A + tE,Q) is a well-defined

smooth curve starting at (A,Q) whose initial velocity is (E, 0). Then,

dL(A,Q)[E, 0] = d/dt
∣∣
t=0

L ◦ γ(t).

Let Yt := L ◦ γ(t) and Y := L ◦ γ(0), then we obtain that

Yt − Y = L
(
A, t(EY A⊺ + AY E⊺) +O(t2)

)
= tL(A,EY A⊺ + AY E⊺) +O(t2),

where the first equality is by direct algebraic manipulation and the second one follows by

linearity of L in the second coordinate. Therefore, dL(A,Q)[E, 0] = L(A,EY A⊺ + AY E⊺),

and the first claim follows by adding the two computed differentials and using linearity of L in

the second coordinate again. Finally, note that any square matrix has an spectrum identical

to its transpose, therefore if A ∈M then A⊺ ∈M, and thus the last property follows by the

convergent series representations of L(A⊺, Q) and L(A,Σ), and cyclic permutation property

of trace.

7An alternative argument can be provided by the closed form solution of (2.1) and its “vectorization”
involving rational functions of several variables with non-vanishing denominators—cf. Lemma 3.6 in [Bu
et al., 2019a].
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Proof of Lemma 2.2. First, we show that it is well-defined. Indeed, by Lemma 2.1 for

each K ∈ S, L(AK ,ΣK) is uniquely determined, symmetric and smooth in K, since AK is

stabilizing. Also, L(AK ,ΣK) ∈ M(n× n,R) is positive semidefinite definite by observing its

series representation as in (2.2) and the fact that ΣK ⪰ 0. Next, tr [(VK)⊺WK L(AK ,ΣK)] is

a smooth function of elements of VK ,WK and L(AK ,ΣK). Therefore, for any V,W ∈ X(S),

the function ⟨V,W ⟩Y as defined in the premise is well-defined and smooth on S. Additionally,

by linearity of trace, we observe that ⟨., .⟩Y is multilinear over C∞(S), i.e.

⟨fU + hV,W ⟩Y = f ⟨U,W ⟩Y + h ⟨V,W ⟩Y ,

for any f, h ∈ C∞(S) and U, V ∈ X(S), and similarly for the second entry. Therefore, by

Tensor Characterization Lemma, it is induced by a smooth covariant 2-tensor field. Finally,

it is symmetric because for any K ∈ S

⟨V,W ⟩Y
∣∣
K

= tr [(L(AK ,ΣK))⊺ (WK)⊺ VK ] = tr [(WK)⊺ VK (L(AK ,ΣK))⊺] = ⟨W,V ⟩Y
∣∣
K
,

where we used the symmetry of L(AK ,ΣK).

Proof of Proposition 2.3. We know that S is a smooth manifold, and by Lemma 2.2

and Smoothness Criteria for Tensor Fields, g is a smooth symmetric covariant 2-tensor field.

So it is left to show that it is positive definite at each point K ∈ S. But ΣK ⪰ 0 and

(AK ,ΣK) is controllable, therefore YK = L(AK ,ΣK) is a positive definite matrix, implying

that gK(E,E) = tr
[
(EY

1
2
K )⊺EY

1
2
K

]
≥ 0, for any E ∈ TKS with equality if and only if E is

the zero element. Next, to calculate the coordinate representation of g, for each coordinate

pairs (i, j) and (k, ℓ) we have

g(i,j)(k,ℓ)(K) = gK(∂i,j|K , ∂k,ℓ|K) = tr [(∂i,j|K)⊺∂k,ℓ|KYK ] ,

under the usual identification of TKS. Since under this identification each ∂i,j corresponds

to an element of M(m× n,R) with entry 1 in (i, j)-th coordinate and zero elsewhere, the

expression for g(i,j)(k,ℓ) follows by direct computation of the last equality. Finally, by definition

of “inverse matrix”, for each (i, j) and (k, ℓ) we must have
∑

r,s g
(i,j)(r,s)g(r,s)(k,ℓ) = 1 if (i, j) =
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(k, ℓ) and 0 otherwise. Next, for each i = k, let
[
g(k,.)(k,.)

]
denote the matrix with g(k,j)(k,s)

as its (j, s)-th entry. Then, by the expression for g(i,j)(k,ℓ), it must satisfy
[
g(k,.)(k,.)

]
YK = In,

and therefore [g(k,.)(k,.)] = Y −1
K as YK ≻ 0. The rest follows by doing a similar calculation for

each i ̸= k and noting the zero pattern in the expression for g(i,j)(k,ℓ).

Proof of Proposition 2.5. For each (i, j), (k, ℓ), (p, q) ∈ [m]× [n], we know that

Γ
(i,j)
(k,ℓ)(p,q) =

∑

r,s

g(i,j)(r,s)

2

(
∂(k,ℓ)g(r,s)(p,q) + ∂(p,q)g(r,s)(k,ℓ) − ∂(r,s)g(k,ℓ)(p,q)

)
, (2.9)

where g(i,j)(r,s) denotes the inverse matrix of g(i,j)(r,s). If k ̸= i ̸= p ̸= k, then by sparsity

pattern in the expression for g(i,j)(k,ℓ) in Proposition 2.3 we obtain Γ
(i,j)
(k,ℓ)(p,q) = 0. Next, if

k = i ̸= p, then we have

∑

s

g(i,j)(i,s)

2

(
∂(p,q)g(i,s)(i,ℓ)

)
=

1

2

(
∂(p,q)[YK ](ℓ,.)

)
[Y −1
K ](.,j).

Next, for any fix i, p and q, let Γ
(i,.)
(i,.)(p,q) denote the n × n matrix with Γ

(i,j)
(i,ℓ)(p,q) as its (ℓ, j)

entry. Then it must satisfy

Γ
(i,.)
(i,.)(p,q) =

1

2

(
∂(p,q)YK

)
Y −1
K ,

where ∂(p,q)YK indicates the action of tangent vector ∂(p,q) on the composite map K →
(AK ,ΣK)

L−→ YK . By Lemma 2.1, we can calculate

∂(p,q)YK = dL(AK ,ΣK)

[
B∂(p,q), ∂

⊺
(p,q)Σ2K +K⊺Σ2∂(p,q)

]
= dYK(p, q),

under the usual identification of TKS. This proves the second case. The third case follows

by the symmetry of the Riemannian connection, i.e. Γ
(i,j)
(k,ℓ)(p,q) = Γ

(i,j)
(p,q)(k,ℓ). Next, if p = k ̸= i,

then by Proposition 2.3, we get

∑

s

g(i,j)(i,s)

2

(
∂(i,s)g(k,ℓ)(k,q)

)
=

1

2

∑

s

[
∂(i,s)YK

]
(q,ℓ)

[Y −1
K ](s,j),

with ∂(i,s)YK = dYK(i, s) computed similarly. Therefore, (2.9) simplifies for Γ
(i,j)
(k,ℓ)(k,q) as

claimed. Finally, if k = i = p then similarly we get

∑

s

g(i,j)(i,s)

2

(
∂(i,ℓ)g(i,s)(i,q) + ∂(i,q)g(i,s)(i,ℓ) − ∂(i,s)g(i,ℓ)(i,q)

)
,
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which simplifies (2.9) for Γ
(i,j)
(i,ℓ)(i,q).

Proof of Proposition 2.7. Note that f is smooth and S̃ is an embedded submanifold of

S. Therefore, h : S̃ → R is smooth by restriction and we can define gradh and Hessh on

S̃. But, gradh ∈ X(S̃) is the unique vector field on S̃ such that g̃(W, gradh) = Wh for any

W ∈ X(S̃). Unravelling the definition implies that for any K ∈ S̃ ⊂ S,

dhK(WK) = dfK(dιS̃(WK))

= gK
(
dιS̃(WK), gradfK

)

= gK
(
dιS̃(WK), dιS̃(π⊤ gradfK)

)
,

because h = f ◦ ιS̃ and thus dh = df ◦ dιS̃ , where the last equality follows by the fact that

ιS̃(WK) ∈ TKS is tangent to S̃. By definition of tangential projection, π⊤ (gradf |S̃) is then

a smooth vector field on S̃ that satisfies

Wh = g̃
(
W,π⊤ gradf |S̃

)
,

for any W ∈ X(S̃). Therefore, the first claim follows by uniqueness of the gradient. Next,

note that the Hessian operator of h ∈ C∞(S̃) is defined as Hessh[V ] := ∇̃V gradh, for any

V ∈ X(S̃). But then, the first claim together with (2.5) and the linearity of connection imply

that

Hessh[V ] =π⊤∇V (π⊤ (gradf |S̃))

=π⊤ (Hessf [V ]
∣∣
S̃)− π⊤∇V (π⊥ (gradf |S̃)),

where all V , π⊤ (gradf |S̃) and π⊥ (gradf |S̃) are extended arbitrarily to smooth vector fields

on a neighborhood of S̃ in S. Finally, the extrinsic expression of Hessh follows by The

Weingarten Equation.

Proof of Lemma 2.10. Let γ̃ : (−ε, ε) → S̃ denote the smooth geodesic curve on the

submanifold S̃ with γ̃(0) = K∗ and γ̃′(0) = F for an arbitrary F ∈ TK∗S̃. Define ℓ(t) :=
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h◦ γ̃(t) : (−ε, ε)→ R which it is smooth by composition. Then, K∗ is a strict local minimum

for h, so is t = 0 for ℓ(t) following by continuity of γ̃. Therefore,

0 = ℓ′(0) = dhγ̃(0) ◦ γ̃′(0) = ⟨gradhK∗ , F ⟩YK∗ ,

and as F was an arbitrary tangent vector, we conclude that gradhK∗ = 0. Next, Taylor’s

formula for ℓ at t = 0 yields

ℓ(t) = ℓ(0) + t ⟨gradhK∗ , F ⟩YK∗ +
1

2
ℓ′′(s)t2,

for some s ∈ (0, t). As gradhK∗ = 0 and t = 0 is a local minimum of ℓ(t), we must have

ℓ′′(s) ≥ 0; by tending t→ 0, smoothness of ℓ implies that ℓ′′(0) ≥ 0. But,

ℓ′′(t) = D̃t

〈
gradhγ̃(t), γ̃

′(t)
〉
Yγ̃(t)

=
〈
D̃tgradhγ̃(t), γ̃

′(t)
〉
Yγ̃(t)

where D̃t denotes the covariant derivative along γ̃ on S̃, and the last equality follows by its

compatibility with the metric and the fact that γ̃ is a geodesic (so that D̃tγ̃
′(t) ≡ 0). As

gradh|γ̃(t) ∈ X(γ) is clearly extendable, we conclude that

ℓ′′(t) =
〈
∇γ̃′(t)gradh

∣∣
γ̃(t)
, γ̃′(t)

〉
Yγ̃(t)

=
〈
Hesshγ̃(t)[γ̃

′(t)], γ̃′(t)
〉
Yγ̃(t)

,

and thus particularly ℓ′′(0) = ⟨HesshK∗ [F ], F ⟩YK∗ . Since F was arbitrary and K∗ is non-

degenerate, ℓ′′(0) ≥ 0 implies that HesshK∗ is positive definite. Next, existence of a neigh-

borhood at K∗ on which Hessh is positive definite follows by smoothness—in particular

continuity—of the operator HesshK in K. Finally, let ∇̃ and ∇̃ denote the connections on

T S̃ induced, respectively, by the connections ∇ and ∇ on TS. Then by The Difference

Tensor Lemma, the difference tensor between ∇̃ and ∇̃—defined as D(U, V ) := ∇̃UV −∇̃UV

for any U, V ∈ X(S̃)—is indeed a (1,2)-tensor field. That means, as gradhK∗ = 0,

HesshK∗ [UK∗ ]− HesshK∗ [UK∗ ] = D(U, gradh)|K∗ = 0.

The last claim then follows as U ∈ X(S̃) was arbitrary.
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2.5.2 Theoretical Analysis of the Results in §2.4

Proof of Theorem 2.11. By Lemma 2.10, gradhK∗ = 0 and there exists a neighborhood

U of K∗ on which HesshK is positive. Furthermore, by continuity of Hessh (and, if necessary,

shrinking U) we can obtain constant positive scalars m and M such that for all K ∈ U and

G ∈ TKS̃,

m∥G∥2YK ≤ ⟨HesshK [G], G⟩YK ≤M∥G∥2YK . (2.10)

In particular, if Gt ∈ TKtS̃ is the Newton direction at some point Kt ∈ U , then (by Cauchy-

Schwartz inequality at Kt) we must have

∥Gt∥YKt
≤ 1

m
∥gradhKt∥YKt

. (2.11)

Next, define the curve γ : [0, sKt ] → S̃ with γ(η) = Kt + ηGt, and consider a smooth

parallel vector field (with respect to the Riemannian connection) E(η) along γ8. Also, define

ϕ : [0, sKt ]→ R with

ϕ(η) :=
〈
gradhγ(η), E(η)

〉
Yγ(η)

.

Notice that gradh is smooth, so is ϕ and by compatibility with the metric and the fact that

gradhγ(η) is clearly extendable, we have

ϕ′(η) =
〈
Dηgradhγ(η), E(η)

〉
Yγ(η)

=
〈
Hesshγ(η)[Gt], E(η))

〉
Yγ(η)

,

where Dη is the covariant derivative along γ and Gt is extended to the vector field along γ

with constant coordinates in the global coordinate frame. Thus, as

ϕ(η) = ϕ(0) + ηϕ′(0) +

∫ η

0

[ϕ′(τ)− ϕ′(0)]dτ,

by direct substitution and the fact that Gt is the Newton direction at iteration t, we obtain

that

ϕ(η) = (η − 1) ⟨HesshKt [Gt], E(0)⟩YKt
+

∫ η

0

〈
[Hesshγ(τ) − Pγ0,τHesshγ(0)]Gt, E(τ))

〉
Yγ(τ)

dτ,

8We particularly refer to [Lee, 2018] for the idea of “parallel vector fields along curves” and “parallel
transport”.
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where Pγ0,τ denotes the parallel transport from 0 to τ along γ. Again, as every parallel

transport map along γ is a linear isometry we claim that

〈
gradhKt+1 , E(ηt)

〉
YKt+1

= (ηt − 1)
〈
Pγ0,ηtHesshKt [Gt], E(ηt)

〉
YKt+1

+

∫ ηt

0

〈
Pγτ,ηt [Hesshγ(τ) − Pγ0,τHesshγ(0)]Gt, E(ηt))

〉
YKt+1

dτ.

Note that, for each τ ∈ [0, sKt ], Hesshγ(τ) is a self-adjoint operator that is smooth in τ as γ

is. So, by (2.10), we obtain

∥Pγ0,ηtHesshKt [Gt]∥YKt+1
≤M∥Gt∥YKt

,

and by smoothness there exist a constant L > 0 such that

∥Pγτ,ηt [Hesshγ(τ) − Pγ0,τHesshγ(0)]Gt∥YKt+1
≤ τL∥Gt∥2YKt

where we used the isometry of parallel transport again in obtaining the bounds. Therefore,

by choosing the parallel vector field E(η) along γ such that E(ηt) = gradhKt+1 we obtain

that

∥gradhKt+1∥YKt+1
≤M |1− ηt|∥Gt∥YKt

+
ηt
2
L∥Gt∥2YKt

.

Combining this with (2.11) yields

∥gradhKt+1∥YKt+1
≤ M

m
|1− ηt|∥gradhKt∥YKt

+
L

2m2
ηt∥gradhKt∥2YKt

. (2.12)

Next, let Ft+1 ∈ TKt+1S̃ be tangent vector that ξ(η) = ẽxpKt+1
[ηFt+1] is the minimum-

length geodesic in S̃ joining ξ(0) = Kt+1 to ξ(1) = K∗, where ẽxp denotes the exponential

map on S̃. This is certainly possible (by shrinking U if necessary) because geodesics are

locally-minimizing [Lee, 2018]. Similar to the function ϕ, define ψ : [0, 1]→ R with

ψ(η) :=
〈
gradhξ(η), E(η)

〉
Yξ(η)

,

for some parallel vector E(η) along ξ. Then, similarly

ψ′(η) =
〈
Dηgradhξ(η), E(η)

〉
Yξ(η)

=
〈
Hesshξ(η)[ξ

′(η)], E(η))
〉
Yξ(η)

.
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The velocity of any geodesic is a parallel vector field along itself, so by choosing E(η) = ξ′(η)

and using the fundamental lemma of calculus for ψ we obtain that

ψ(1) =
〈
gradhKt+1 , Ft+1

〉
YKt+1

+

∫ 1

0

〈
Hesshξ(τ)[ξ

′(τ)], ξ′(τ))
〉
Yξ(τ)

dτ.

Note that ψ(1) = 0 and ∥ξ′(τ)∥Yξ(τ) = ∥Ft+1∥YKt+1
for all τ as ξ is a geodesic. Thus, by using

(2.10), we conclude that

m∥Ft+1∥YKt+1
≤ ∥gradhKt+1∥YKt+1

≤M∥Ft+1∥YKt+1
. (2.13)

Finally, combining (2.12) and (2.13) at two iterations t+1 and t, and noticing dist(Kt+1, K
∗) =

∥Ft+1∥YKt+1
imply that

dist(Kt+1, K
∗) ≤ |1− ηt|

M2

m2
dist(Kt, K

∗) + ηt
LM2

2m3
dist(Kt, K

∗)2, (2.14)

where dist(·, ·) denotes the Riemannian distance function between two points. Next, note

that the mapping K → QK is chosen to be smooth such that QK ≻ 0, therefore as a result

of Lemma 2.1, the mapping K → L(A⊺
K , QK) is smooth by composition. By smoothness

(in particular continuity) of this mapping and the continuity of the maximum eigenvalue

(utilized in the definition of stability certificate sK in Lemma 2.8), we can shrink U—if

necessary—to obtain a positive constant c > 0 such that

sKt ≥
c

∥Gt∥YKt

≥ cm/M

dist(Kt, K∗)
, (2.15)

where the last inequality follows by combining (2.11), (2.13) and the fact that dist(Kt, K
∗) =

∥Ft∥YKt
. Now, pick r ∈ (0, 1); if we set U∗ ⊂ U ⊂ S̃ such that for any K0 ∈ U∗ we have

dist(K0, K
∗) < min{ cm

M(1− r/2)
,
m3r

LM2
}

then by the choice of stepsize ηt = min{sKt , 1} and the lower-bound in (2.15), we can claim

that

|1− η0|
M2

m2
+ η0

LM2

2m3
dist(K0, K

∗) < r.
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But then, (2.14) implies that

dist(K1, K
∗) ≤ r dist(K0, K

∗).

Therefore, K1 ∈ U∗ as r < 1, and thus by induction we conclude a linear convergence rate

to K∗. Consequently, (2.15) implies that sKt ≥ 1 for large enough t, and thus by the choice

of step-size (2.14) simplifies to

dist(Kt+1, K
∗) ≤ LM2

2m3
dist(Kt, K

∗)2,

guaranteeing a quadratic convergence rate. Finally, Lemma 2.10 implies that a critical point

is nondegenerate with respect to the induced Riemannian connection on T S̃ if and only if

it is so with respect to the Euclidean one. The proof for RNPO with Hess then follows

similarly by redefining ϕ and ψ using the Euclidean metric under the usual identification of

the tangent bundle, which is omitted for brevity.

2.6 Applications of RNPO to Distributed and Output LQR Problems

In this section we provide a couple of applications of our methodology for optimizing the

LQR cost over two different submanifold induces by Structured LQR (SLQR) and Output-

feedback LQR (OLQR) problems.

2.6.1 Background

Consider a discrete-time linear time-invariant system dynamics

xk+1 =Axk +Buk, (2.16)

yk =Cxk

where A ∈ M(n× n,R), B ∈ M(n×m,R) and C ∈ M(d× n,R) are the system parameters

for some integers n, m and d; xk and uk denote the states vector and inputs vector, respec-

tively, and x0 is given. Conventionally, the Linear Quadratic Regulators (LQR) problem is
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to design a sequence of input signals u = (uk)
∞
0 ∈ ℓ2 that minimizes the following quadratic

cost

Jx0(u) =
1

2

∞∑

k=0

x⊺
kQxk + u⊺

kRuk, (2.17)

subject to the dynamics in (2.16), where Q = Q⊺ ≽ 0 and R = R⊺ ≻ 0 are prescribed

cost parameters. Using Dynamic Programming or Calculus of Variations, it is well known9

that the optimal state-feedback solution u∗ to this problem reduces to solving the Discrete-

time Algebraic Riccati Equation (DARE) for the optimal cost matrix PLQR. This results

in a linear state-feedback optimal control u∗
k = KLQRxk where KLQR ∈ M(m× n,R) is the

optimal LQR gain (policy) obtaining from PLQR. Also, the associated optimal cost can be

obtained as Jx0(u
∗) = 1

2
x⊺
0PLQRx0.

Naturally, one could think of the LQR cost as a map K 7→ Jx0(u = Kx), however, this

would depend on x0 and generally, its value can be still finite while K is not necessarily

stabilizing ( i.e. when K /∈ S is not feasible). Instead, in order to avoid the dependency

on the initial state while considering the constraints on the linear feedback control policy

directly, we pose the following constrained optimization problem

min
K

f(K) := E
x0∼D

Jx0(u) (2.18)

s.t. xk+1 = Axk +Buk, ∀k ≥ 0,

u = Kx,

K ∈ S̃,

where S̃ is an embedded submanifold of S, and D denotes a distribution of zero-mean

multivariate random variables of dimension n with covariance matrix Σ1 so that 0 ≺ Σ1 =

Σ⊺
1 ∈ M(n× n,R).

Next, we can reformulate the problem in (2.18) as follows. For each stabilizing controller

9See, e.g., Section 22.7 in [Goodwin et al., 2001].
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K ∈ S, from (2.16) and (2.17) we have that

Jx0(u = Kx) =
1

2

∞∑

k=0

x⊺
0(A

k
K)⊺[Q+K⊺RK]AkKx0,

where AK := A+BK. Since, AK is a stability matrix, the sum
∑∞

k=0(A
k
K)⊺[Q+K⊺RK]AkK

converges, which is equal to the unique solution of the following Lyapunov equation:

PK := L(A⊺
K , K

⊺RK +Q).

Therefore, f(K) can be calculated as

f(K) =
1

2
E

x0∼D
tr [PKx0x

⊺
0] =

1

2
tr [PKΣ1] .

Thus, the problem in (2.18) reduces to

min
K

f(K) =
1

2
tr [PKΣ1] (2.19)

s.t. K ∈ S̃.

This reformulation of the LQR cost function has been adopted before (see e.g., [Fazel

et al., 2018; Mårtensson, 2012; Bu et al., 2019a]) but the inherent geometry of the submanifold

S̃ has been overlooked. If there is no constraint on the controller, i.e. S̃ = S, then a well-

known quasi-Newton algorithm—due to Hewer—is known to converge to the optimal state-

feedback control at a quadratic rate [Hewer, 1971]. Otherwise, S̃ may have disconnected

components, and in general, the constrained cost function may introduce stationary points

that are not local minima. Nonetheless, in this section, we apply the techniques developed

in §2.3 and Algorithm 2.1 to the constraint arising in the well-known SLQR and OLQR

problems. Note that both of these problems can be cast as an optimization in (2.19) with S̃
denoting a specific submanifold of S that will be detailed in Section 2.6.4 and Section 2.6.5,

respectively.

2.6.2 Solving for the Newton direction

In order to solve for the Newton direction at any K ∈ S̃, suppose the tuple (∂̃(p,q)|(p,q)∈D)

denotes a smooth local frame for S̃ on a neighborhood of K where D is a subset of [m]× [n]
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depending on the dimension of S̃.10 In fact, by Proposition 2.7, for any G = [G]k,ℓ∂̃(k,ℓ)|K ∈
TKS̃ (interpreted as a subspace of TKS), finding Newton direction on S̃ reduces to solving

the following system of |D|-linear equations (for each index (p, q) ∈ D)

∑

(k,ℓ)∈D

[G]k,ℓh;(k,ℓ)(p,q)(K) = −
〈
π⊤ (gradf |K), ∂̃(p,q)|K

〉
YK
,

where h;(k,ℓ)(p,q) denote the coordinate functions of ∇̃2h with respect to the local coframe

dual to (∂̃(p,q)|(p,q)∈D). Thus, by (2.7), h;(k,ℓ)(p,q)(K) can be computed as follows

h;(k,ℓ)(p,q)(K) =
〈

HesshK [∂̃(k,ℓ)|K ], ∂̃(p,q)|K
〉
YK

;

or with Hessh replaced by Hessh, depending on the choice of connection.

2.6.3 Analysis of the special cost function

Now we turn our attention towards the analysis of the following cost function over the

Riemannian manifolds (S, g) and (S̃, g̃). To particularize the results obtained so far to this

special case, we set Σ2 = 0 in the definition of ΣK in (2.4).

Proposition 2.13. Consider the Riemannian manifold (S, g,∇) and the cost function f :

S → R defined as f(K) = 1
2
tr [PKΣ1] where PK = L(A⊺

K , K
⊺RK + Q). Then, f is smooth

and under the usual identification of the tangent bundle

gradfK = RK +B⊺PKAK .

Furthermore, Hessf and Hessf are both self-adjoint operators which can be characterized as

follows: for any E,F ∈ TKS,

⟨HessfK [E], F ⟩YK = ⟨B⊺(SK |F )AK , E⟩YK + ⟨(R +B⊺PKB)E +B⊺(SK |E)AK , F ⟩YK
−
〈

gradfK , [E]k,ℓ[F ]p,qΓi,j(k,ℓ)(p,q)(K)∂i,j

〉
YK
,

10As S̃ is an embedded submanifold of S, each ∂̃(p,q)|K can be also interpreted as an element of TKS.
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and

〈
Hessf [E], F

〉
YK

= ⟨B⊺(SK |F )AK , E⟩YK + ⟨(R +B⊺PKB)E +B⊺(SK |E)AK , F ⟩YK ,

with Γi,j(k,ℓ)(p,q) denoting the Christoffel symbols of g and

SK |E := L(A⊺
K , E

⊺gradfK + (gradfK)⊺E).

The next corollary provides a similar result for the LQR cost restricted to an embedded

submanifold of S, which is a consequence of Proposition 2.7 and Proposition 2.13.

Corollary 2.14. Under the premise of Proposition 2.13, define h = f |S̃ where S̃ ⊂ S is

an embedded Riemannian submanifold with the induced metric and connection. Then, h is

smooth and under the usual identification of tangent bundle

gradhK = π⊤ (RK +B⊺PKAK).

Furthermore, Hessh is a self-adjoint operator and can be characterized as follows: for any

E,F ∈ TKS̃ ⊂ TKS,

⟨HesshK [E], F ⟩YK = ⟨B⊺(SK |F )AK , E⟩YK + ⟨(R +B⊺PKB)E +B⊺(SK |E)AK , F ⟩YK
−
〈

gradhK , [E]k,ℓ[F ]p,qΓi,j(k,ℓ)(p,q)(K)∂i,j

〉
YK
,

where Γi,j(k,ℓ)(p,q) denotes the Christoffel symbols associated with g and

SK |E := L
(
A⊺
K , E

⊺gradfK + (gradfK)⊺E
)
.

Remark 2.15. If Q ≻ 0, then we can choose the mapping K → QK to be QK = Q+K⊤RK,

and thus the stability certificate sK as defined in Lemma 2.8 must satisfy

sK ≥
λmin(Q)λmin(Σ1)

4f(K)∥BG∥2
,

where f denotes the LQR cost. This is because R,Q,Σ1 ≻ 0 and so is PK ≻ 0, and thus by

the trace inequality

f(K) ≥ 1

2
λmin(Σ1)λmax(PK).
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The claimed lower-bound on stability certificate then follows by combining the last inequality

with the definition of stability certificate. Otherwise if Q ⪰ 0, one can leverage on the

observability of the pair (A,Q1/2) to get similar results.

2.6.4 State-feedback SLQR problem

Any required sparsity pattern on the controller gain K imposes a linear constraint set,

denoted by KD, which indicates a linear subspace of M(m× n,R) with nonzero entries only

for a prescribed subset D of entries, i.e., for any K ∈ KD and (i, j) /∈ D we must have

[K]i,j = 0. Let the tuple (x(i,j)|(i,j)∈[m]×[n]) denote the component functions of the global

smooth chart (M(m× n,R), vec), and define Φ : M(m× n,R)→ Rmn−|D| with

Φ(K) =
∑

(i,j)/∈D

[K]i,jx
(i,j).

Then, it is easy to see that Φ is a smooth submersion, and so is Φ|S because S is an open

submanifold of M(m× n,R). Therefore, as S̃ = S ∩ KD = (Φ|S)−1(0), by Submersion Level

Set Theorem we conclude that S̃ is a properly embedded submanifold of dimension |D|.
Furthermore, at any point K ∈ S̃ and for any tangent vector E ∈ TKS, we can compute

the tangential projection π⊤ : TKS → TKS̃ as follows:

π⊤E = arg min
Ẽ∈TK S̃

〈
E − Ẽ, E − Ẽ

〉
YK
. (2.20)

As KD is a linear subspace of M(m× n,R), we can identify TKS̃ with KD itself (due to

dimensional reasons). Then, it is not hard to show that the unique solution Ẽ∗ to the

minimization above (with linear constraint and strongly convex cost function, as YK ≻ 0),

must satisfy E − Ẽ∗ ⊥ KD with respect to the Riemannian metric at K; or equivalently,

Proj KD

[
(E − Ẽ∗)YK

]
= 0,

where Proj KD
denotes the Euclidean projection onto the sparsity pattern KD. Note that

at each K ∈ S̃, the last equality consists of |D| nontrivial linear equations involving |D|
unknowns (as the nonzero entries of Ẽ∗), which can be solved efficiently.
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Finally, if ∂̃(i,j) (as described in section 2.6.2) is taken to be ∂̃(i,j) = ∂(i,j) for (i, j) ∈ D,

then (∂̃(i,j)|(i,j)∈D) forms a global smooth frame for T S̃. And thus, for each (k, ℓ), (p, q) ∈ D,

the coordinates h;(k,ℓ)(p,q)(K) simplifies to

h;(k,ℓ)(p,q)(K) =
〈

(R +B⊺PKB)∂(k,ℓ) +B⊺(SK |∂(k,ℓ))AK , ∂(p,q)
〉
YK

+
〈
B⊺(SK |∂(p,q))AK , ∂(k,ℓ)

〉
YK
−
〈
π⊤ gradfK ,Γ

i,j
(k,ℓ)(p,q)(K)∂i,j

〉
YK
.

2.6.5 Output-feedback LQR (OLQR) problem

The OLQR problem can be formulated as the optimization problem in (2.18) with the sub-

manifold S̃ = S ∩ KC with the constraint set KC defined as

KC :=
{
K ∈ M(m× n,R) | K = LC, L ∈ M(m× d,R)

}
,

where C ∈ M(d× n,R) is the prescribed output matrix. Note that KC is a linear subspace

of M(m× n,R) whose dimension depends on the rank of C. For simplicity of presentation,

we suppose C has full rank equal to d ≤ n. Now, define Ψ : M(m× n,R) → M(m× n,R)

as follows:

Ψ(K) = K(In − C†C),

where † denotes the Moore–Penrose inverse. Note that Ψ is a linear map that is surjective

onto its range, denoted byR, which is a m(n−d) dimensional linear subspace of M(m× n,R).

Therefore, Φ : S → R defined as the restriction of Ψ both in domain and codomain is a

smooth submersion. Finally, as CC†C = C, we can observe that Ker(Ψ) = KC . Therefore,

S̃ = KC∩S = Φ−1(0) and thus, by Submersion Level Set Theorem, S̃ is a properly embedded

submanifold of S with dimension md. We also conclude that at each K ∈ S̃, we can

canonically identify the tangent space at K as follows:

TKS̃ = Ker(dΦK) ∼= KC .

Next, at any K ∈ S̃ and for any E ∈ TKS, the tangential projection of E, denoted by

Ẽ∗ = π⊤E, is the unique solution of a minimization similar to (2.20). But, under the above
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identification, it must satisfy E − Ẽ∗ ⊥ KC (with respect to the Riemannian metric), or

equivalently,

tr
[
C⊺L⊺(E − Ẽ∗)YK

]
= 0, ∀L ∈ M(m× d,R).

Here, YK = L(AK ,Σ1) is positive definite and since C is assumed to be full-rank, CYKC
⊤

is positive definite. So, we conclude that π⊤E = L∗C with L∗ ∈ M(m× d,R) being the

unique solution of the following linear equation

L∗CYKC
⊤ = EYKC

⊤.

Finally, at each point K ∈ S̃, we denote the global coordinate functions of M(m× d,R)

by the tuple (x̄i,j) for (i, j) ∈ D := [m]× [d] and its corresponding global coordinate frame by

(∂̄(i,j)). Under the identification of TKS̃ ∼= KC explained above, we claim that the choice of

(∂̃(i,j) = ∂̄(i,j)C) for (i, j) ∈ D forms a global smooth frame for T S̃ because they are linearly

independent global vector fields on S̃ as C has full-rank. But then, the coordinates of the

covariant Hessian h;(k,ℓ)(p,q)(K) with respect to this frame can be computed by substituting

E = ∂̄(k,ℓ)C and F = ∂̄(p,q)C in Corollary 2.14 for each (k, ℓ), (p, q) ∈ D—similar to the

SLQR case. It is worth noting that the sparsity pattern in E, F and Christoffel symbols can

simplify the computations which is omitted here for brevity.

2.6.6 Theoretical Analysis of the Results in §2.6

Proof of Proposition 2.13. By definition, f : S → R can be viewed as composition of

the following maps:

f : K
Φ−→ (A⊺

K , K
⊺RK +Q)

L−→ PK
Ψ−→ 1

2
tr [PKΣ1] . (2.21)

Since the first and last map are smooth ( i.e. linear or quadratic in K), we conclude that

f ∈ C∞(S) by composition and Lemma 2.1. For any K ∈ S, we can compute its differential

at K, denoted by dfK , using the chain rule as

dfK(E) = dΨPK
◦ dL(A⊺

K ,K
⊺RK+Q) ◦ dΦK(E),
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for any E ∈ TKS. But Ψ is a linear map, and under the usual identification of the tangent

bundle we obtain

dΦK(E) = (E⊺B⊺, E⊺RK +K⊺RE).

Therefore, by Lemma 2.1 we claim that

d(L ◦ Φ)K(E) = L
(
A⊺
K , E

⊺(B⊺PKAK +RK) + (K⊺R + A⊺
KPKB)E

)
, (2.22)

and thus

dfK(E) = Ψ ◦ L
(
A⊺
K , E

⊺(B⊺PKAK +RK) + (K⊺R + A⊺
KPKB)E

)
. (2.23)

But, by Lyapunov-trace property we get that

dfK(E) = ⟨E,RK +B⊺PKAK⟩YK ,

with YK = L(AK ,Σ1) which is well-defined and unique as AK is a stability matrix. As

dfK(E) = Ef , the expression for gradf ∈ X(S) then follows by its definition. Next, as the

Hessian operator is self-adjoint (see section 2.3.4), in order to obtain Hessf we can compute

(2.6) for any U,W ∈ X(S). As Hessf [U ]|K only depends on the value of U at K, it suffices

to obtain HessfK [UK ] at each K ∈ S with UK = E for arbitrary E ∈ TKS. To do so, we

compute ⟨HessfK [E], F ⟩Y for an arbitrary vector F ∈ TKS by extending F to the vector

field W along the curve γ : t→ K + tE with constant coordinates with respect to the global

coordinate frame (∂(i,j)). As ⟨Hessf [U ],W ⟩Y |K only depends on the value of WK = F and

UK = E, it doesn’t matter how we have extended these vector fields. By properties of the

Riemannian connection and the fact that W can be extended with constant coordinates,

here we can compute ∇UW |K in the global coordinate frame (∂i,j) and obtain that

∇UW |K = [E]k,ℓ[F ]p,qΓi,j(k,ℓ)(p,q)(K) ∂i,j, (2.24)

where Γi,j(k,ℓ)(p,q)(K) denotes the Christoffel symbols associated with the Riemannian metric

g at the point K ∈ S. Therefore, from (2.6) we have that

⟨Hessf [U ],W ⟩Y |K = Er − ⟨gradfK ,∇UW |K⟩YK , (2.25)
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where r := ⟨gradf,W ⟩Y ∈ C∞(S). By the expression obtained for gradf and the fact that

W has constant coordinates, the mapping K → r(K) can be decomposed as:

K
Id×Id−−−→ (K,K)

Id×(L◦Φ)−−−−−→ (K,PK)
Ξ−→ (A⊺

K , (gradfK)⊺F + F ⊺gradfK)
Ψ◦L−−→ r(K),

where we used the Lyapunov-trace property and invariance of trace under transpose to justify

the last mapping. Also note that Φ and Ψ are defined in (2.21) and Ξ : M(m× n,R) ×
M(n× n,R) → M(n× n,R) ×M(n× n,R) is defined as above. Therefore, under the usual

identification of tangent bundle, for any (E,G) ∈ T(K,PK)(M(m× n,R) ×M(n× n,R)) we

can compute that

dΞ(K,PK)[E,G] =
(
E⊺B⊺, E⊺(R +B⊺PKB)F + A⊺

KGBF + F ⊺(R +B⊺PKB)E + F ⊺B⊺G⊺AK

)
.

(2.26)

Therefore, by the chain rule, for any E ∈ TKS we have

drK(E) = Ψ ◦ dL ◦ dΞ ◦ (E, d(L ◦ Φ)K(E)) ,

where the base points of differentials are understood and dropped for brevity. But then, by

(2.22) and (2.26) we get that

dΞ [E, d(L ◦ Φ)K(E)] =
(
E⊺B⊺, E⊺(R +B⊺PKB)F

+ A⊺
K(SK |E)BF + F ⊺(R +B⊺PKB)E + F ⊺B⊺(SK |E)AK

)
,

where SK |E is defined in the premise. Therefore,

drK(E) = Ψ ◦ L
(
A⊺
K , E

⊺(R +B⊺PKB)F

+ A⊺
K(SK |E)BF + A⊺

K(SK |F )BE + E⊺B⊺(SK |F )AK

)
,

and by Lyapunov-trace property we can simplify it as follows

drK(E) =
1

2
tr [E⊺B⊺(SK |F )AKYK + A⊺

K(SK |F )BEYK ]

+
1

2
tr [(E⊺(R +B⊺PKB) + A⊺

K(SK |E)B)FYK ]

+
1

2
tr [F ⊺((R +B⊺PKB)E +B⊺(SK |E)AK)YK ] ,
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where YK = L(AK ,Σ1). Noting that YK , PK , SK |E and SK |F are all symmetric, using the

cyclic permutation property of trace, we get that

drK(E) = ⟨(R +B⊺PKB)E +B⊺(SK |E)AK), F ⟩YK + ⟨B⊺(SK |F )AK , E⟩YK . (2.27)

Then, the expression for Hessf follows by substituting (2.27) and (2.24) in (2.25). Finally,

the expression of Hessf can be obtained similarly by threading through the definitions.

Proof of Corollary 2.14. Smoothness of h and the expression of its gradient follows im-

mediately by Proposition 2.7 and Proposition 2.13. In order to compute HesshK , we can

combine its extrinsic representation as obtained in Proposition 2.7 with (2.25), and use the

definition of Weingarten map to obtain that

⟨HesshK [E], F ⟩YK =
〈
π⊤ (Hessf [U ]

∣∣
S̃),W

〉
Y

∣∣
K

+
〈
Wπ⊥ (gradf |S̃)(U),W

〉
Y

∣∣
K

= Er − ⟨gradfK ,∇UW |K⟩YK +
〈
π⊥ gradfK , π

⊥∇UW |K
〉
YK

= Er −
〈
π⊤ gradfK ,∇UW |K

〉
YK
,

for any E,F ∈ TKS̃ ⊂ S, which are extended to vector fields on a neighborhood in S with

constant coordinates with respect to the global coordinate frame. The claimed expression of

HesshK then follows by substituting (2.24) and (2.27) into the last expression.

2.7 Numerical Simulations

In this section, we provide numerical examples for optimizing the LQR cost over submanifolds

induced by SLQR and OLQR problems. Recall that, for each of these problems, we can

compute the coordinate functions of the covariant Hessian h;(k,ℓ)(p,q)(K) with respect to the

corresponding coordinate frame described in the previous subsections. Therefore, finding the

Newton direction G at any point K ∈ S̃ reduces to solving the system of linear equations

for the unknowns [G]k,ℓ, as described in section 2.6.2, and forming the Newton direction as

G = [G]k,ℓ∂̃(k,ℓ)|K ∈ TKS̃.

For each of SLQR and OLQR problems, we have simulated three different algorithms,

the first two are the variants of Algorithm 2.1 where we use Riemannian connection or
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Euclidean connection to compute Hessh or Hessh, respectively. Note, despite the fact that

HesshK∗ = HesshK∗ whenever gradhK∗ = 0 (as shown in Lemma 2.10), it is not necessarily

the case where gradh does not vanish; therefore, we expect Hessh and Hessh to contain very

different information on neighborhoods of isolated local minima which directly influence the

performance of RNPO as will be discussed below. The third one is the Projected Gradient

(PG) algorithm as studied in [Bu et al., 2019a]. Here, the step size for the PG algorithm is

a constant value that guarantees the iterates stay stabilizing as suggested therein. However,

as the convergence rate of the PG is guaranteed to be sublinear, the improvement of error

from optimality is not relatively significant.

Example 2.16 (Convergence of RNPO versus PG). Assume the following parameters

(A|B|Q|Σ) =




0.8 1 0 0 1 10 0 0 1 0 0

0 0.6 1 0 1 0 5 0 0 5 0

0 0 0.1 1 0 0 0 1 0 0 10


 ,

R = I2 and C =


1 0 1

0 1 0


. Also, consider a prescribed sparsity pattern as a hard

constraint for the SLQR problem that is described by D := {(1, 1), (1, 3), (2, 2)} as spec-

ified in Section 2.6.4. The initial controller for SLQR and OLQR problems are chosen as

K0 =


−0.2 0.0 0.2

0.0 −0.5 0.0


 and K0 =


0 0

0 −0.6


C, respectively, which are points in

the corresponding S̃. Then, the result of applying Algorithm 2.1 to each of these problems

are provided in Figure 2.2 and Figure 2.3, respectively.

As guaranteed in the Theorem 2.11, the linear-quadratic convergence behavior of RNPO

is observed in the both problems. Especially, the quadratic behavior starts after 32 steps and

23 iterations for SLQR and OLQR examples, respectively. In both cases, using Riemannian

connection in Algorithm 2.1 (blue curves) has a superior convergence rate compared to the

case of using the Euclidean connection (orange curves); this was expected as the Riemannian

connection is compatible with the metric induced by the geometry inherent to the cost
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Figure 2.2: The normalized error of iterates and cost values at each iteration for the SLQR

problem in Example 2.16.

function itself. However, this relative advantage in sample complexity requires computation

of Christoffel symbols.

Example 2.17 (Trajectories of RNPO using Hess versus Hess). In order to illustrate how

the performance of RNPO is different in terms of using the Riemannian connection (Hessh)

versus Euclidean connection (Hessh), we consider another example with system parameters

(A|B|Q|R|Σ) =

 0.8 1.0 0.0 1.0 10.0 0.0 0.1 0.0 1.0 0.0

0.0 0.9 1.0 0.0 0.0 0.5 0.0 0.1 0.0 5.0


 .

We run RNPO and PG algorithms for both OLQR and SLQR problems involving two de-

cision variables, so that we can plot the trajectories of iterates over the level curves of the



45

10−12

10−8

10−4

100

f
(K

)−
f

(K
∗ )

f
(K

0
)−
f

(K
∗ )

Alg.1 (Hess)

Alg.1 (Hess)

PG

0 20 40 60 80
iteration

10−12

10−8

10−4

100

‖K
t−
K
∗ ‖

‖K
0
−
K
∗ ‖

Alg.1 (Hess)

Alg.1 (Hess)

PG

Figure 2.3: The normalized error of iterates and cost values at each iteration for the OLQR

problem in Example 2.16.
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associated cost function from different initial points (as illustrated in Figure 2.5 and Fig-

ure 2.4, respectively).

In Figure 2.4, first, note that RNPO with Hess does not converge if initialized away

from the local minimum (and away from the line l2 = −1) simply because the Euclidean

Hessian fails to be positive definite therein (see Figure 2.1). On the other hand, RNPO with

Hess successfully captures the inherent geometry of the problem here and converges from

all initializations. These exemplify how RNPO can exploit the connection compatible with

the metric (inherent to the cost function) in order to provide more effective iterate updates.

Second, the square marker on each trajectory of RNPO indicates the first time stepsize ηt = 1

is guaranteed to be stabilizing ( i.e. sKt ≥ 1). It can be seen that the neighborhood of the

local minimum (zoomed in)—on which the identity stepsize is possible—is relatively very

small. Whereas, by using the stability certificate, the specific choice of stepsize adopted here

enables RNPO to handle initialization further away from the local minimum. Finally, PG

algorithm has a sublinear rate, therefore, despite its progress in the beginning, it becomes

so slow that it does not converge practically.

Next, notice that in both Figure 2.4 and Figure 2.5, the trajectories of RNPO with Hessh

is much more favorable in comparison to RNPO with Hessh; especially, if it is initialized from

points further away from the local minimum and closer to the boundary. Also, the iterates

of RNPO with Hess converges much faster than that of Hess; especially, if initialized from

points closer to the boundary. Additionally, similar to Figure 2.4, the region on which the

unit stepsize is guaranteed to be stabilizing is relatively very small in Figure 2.5. Similarly,

due to sublinear convergence rate of PG, it does not converge practically.

Example 2.18 (Randomly selected system parameters). Next, we consider an example with

n = 6 number of states and m = 3 number of inputs, and simulate the behavior of RNPO

and PG for 100 randomly sampled system parameters. Particularly, the parameters (A,B)

are sampled from a zero-mean unit-variance normal distribution where A is scaled so that

the open-loop system is stable, i.e., K0 = 0 is stabilizing, and the pair is checked to be
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Figure 2.4: The trajectories of iterates K =


l1 0

0 l2


 generated by RNPO (with Hessh and

Hessh) and PG—from different initial points—for the SLQR problem with sparsity constraint

Dc = {(1, 2), (2, 1)}.
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.
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Figure 2.6: The min, max and median progress of normalized error of iterates and cost

values at each iteration, for the SLQR problem with 100 different randomly sampled system

parameters and sparsity patterns D.

controllable. Also, we choose Q = Σ = In and R = Im in order to compare the convergence

behaviors across different samples consistently.

For the SLQR problem, we randomly sample for the sparsity pattern D so that at least

half of the entries are zero and all of the them have converged from K0 = 0 in less than

30 iterations. For the OLQR problem, we also randomly sample the output matrix C with

d = 2, where %98 and %92 of them have converged from K0 = 0 in less than 50 iterations

using Hess and Hess, respectively. Finally, the minimum, maximum and median progress of

the three algorithms for both SLQR and OLQR problems are illustrated in Figure 2.6 and

Figure 2.7, respectively.
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Figure 2.7: The min, max and median of normalized error of iterates and cost values at

each iteration of Algorithm 2.1, for the OLQR problem with 100 different randomly sampled

system parameters (including output matrix C).
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2.8 Remarks and Future Directions

In this chapter, we considered the problem of optimizing a smooth function over submani-

folds of Schur stabilizing controllers S. In order to treat this problem in a general format,

we have studied the first and second order behavior of a smooth function when constraint

to an embedded submanifold from an extrinsic point of view. Then, using the second or-

der information of the restricted function, we have developed an algorithm that guarantees

convergence to local minima at least with a linear rate and eventually with a quadratic

rate. Combining this approach with backtracking line-search techniques or positive definite

modifications of the Hessian operator [Dennis Jr and Schnabel, 1996; Nocedal and Wright,

2006] can be considered as immediate future directions that guarantee a global convergence

behavior.

Even though the proposed algorithm depend on the linear structure of S̃, the machinery

developed here can be utilized for considering more complicated submanifolds which is the

topic of our future work. As an example and in contrast to the other two (SLQR and OLQR)

problems considered, we can explain how a constraint on the “average input energy” would

translate to a nonlinear constraint that is related quiet deeply to the inherent geometry of

the LQR problem. For that, we define the average input energy, denote by Eu, as a measure

for the average consumption of energy to be

Eu := E
x0∼D

∥u∥2ℓ2 ,

where ∥.∥ℓ2 refers to ℓ2-norm. By the choice of static linear policy, i.e. u = Kx for any

K ∈ S, and thus considering the closed-loop system dynamics xk = (AK)kx0, we can show,

in the next paragraph, that under the usual identification of TKS with M(m× n,R) we

have Eu(K) = ∥K∥2YK . But then, Eu : S → R is smooth by composition, and then every

regular level set of Eu translates to an upperbound on the average input energy. Therefore,

by Regular Level Set Theorem, it introduces a constraint as an embedded submanifold of S
which has a nonlinear but simple structure whenever considered in the associated Rieman-

nian geometry. However, solving this problem still requires an efficient retraction that would
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substitute the linear updates possible in SLQR and OLQR problems. Our approach allows

integration of such retractions which introduces a new approach for solving constrained opti-

mization problems over the manifold of Schur stabilizing controllers—such as the constraint

LQR problems.

In particular, under the choice of linear policy, i.e. u = Kx for some K ∈ S, and by

considering the closed-loop system dynamics xk = (AK)kx0, we can compute the expected

total input energy as a function of K as follows

Eu(K) = E
x0∼D

∞∑

k=0

∥Kxk∥2F

= E
x0∼D

∞∑

k=0

tr
[
K⊤K(AK)kx0x

⊺
0(A

⊺
K)k)

]

=
∞∑

k=0

tr
[
K⊤K(AK)kΣ1(A

⊺
K)k)

]

= tr
[
K⊤KYK

]
,

where YK = L(AK ,Σ1) and ∥.∥ℓ2 for a matrix valued signal refers to the ∥vec(.)∥ℓ2 . Also,

the result of this chapter has been mainly adapted from [Talebi and Mesbahi, 2022].

As another future directions of this work, we point out the problem of learning the

constrained policy without the knowledge of system parameters. Also, uncertainty in the

problem parameters often occurs in large networked systems, requiring a scalable solution

strategy. This is the topic of the next chapter, where we consider learning the problem of

structured controller for a network of homogeneous systems.



53

Chapter 3

DISTRIBUTED DATA-DRIVEN STRUCTURED POLICY
ITERATION

Control of networked systems, comprised of interacting agents, is often achieved through

modeling their underlying interactions. Constructing accurate models of such interactions–in

the meantime–can become prohibitive in applications. Data-driven control methods avoid

such complexities by directly synthesizing a controller from the observed data. In this chap-

ter, we propose an algorithm referred to as Distributed Data-driven Structured Policy Iter-

ation (D3SPI), for synthesizing an efficient feedback mechanism that respects the sparsity

pattern induced by the underlying interaction network. In particular, our algorithm uses

temporary “auxiliary” links to boost information exchange for a (smaller) sub-network dur-

ing the “learning phase.” We then proceed to show that the updated policy results in a

stabilizing structured policy for the entire network. This is followed by stability and conver-

gence analysis for the proposed distributed policies throughout the learning phase, exploiting

a construct referred to as the “patterned linear semigroup.” The performance of D3SPI is

then demonstrated using representative simulation scenarios.

3.1 Introduction

In recent years, there has been a renewed interest in distributed control of large-scale sys-

tems. The unprecedented interdependence and size of the data generated by such systems

have necessitated a distributed approach to policy computation in order to influence or

direct their behavior and performance. In these scenarios, collective actions are often syn-

thesized via local decisions, informed by a structured information exchange mechanism. An

important roadblock for centralized control design methods, is thereby, their scalability and
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shortcomings in utilizing the underlying structure of large-scale interconnected systems.1

Structured control synthesis in the meantime is an NP-hard constrained optimization

problem [Papadimitriou and Tsitsiklis, 1986]. Hence, distributed control design for large-

scale systems has often been pursued not necessarily to characterize optimal policies per se,

but to devise efficient (possibly suboptimal) control mechanisms that exploit the inherent

system structure. In parallel, recent advances in measurement technologies have made avail-

able of an unprecedented amount of data, motivating how offline and online data-processing

can be leveraged for data-driven decision-making on high-dimensional complex systems.

In this work, we propose the linear-quadratic regulator (LQR)-based algorithm, coined

Distributed Data-driven Structured Policy Iteration (D3SPI), to iteratively learn stabilizing

controllers for unknown but identical linear dynamical systems that are connected via a

network induced by the coupling in their performance. The setup is a particular realization

of cooperative game-theoretic decision-making (see remarks under Footnote 2). This class of

synthesis problems is motivated by applications such as formation flight [Stipanovic et al.,

2004] and distributed camera systems [Borrelli et al., 2005], where the dynamics of the

network nodes (agents) cannot be precisely parameterized. D3SPI is built upon a data-

driven learning phase on a subgraph in a large system. This subgraph includes the agent with

maximum degree in the network and requires enabling auxiliary links within this subgraph

in order to iteratively learn a stabilizing structured controller (optimal for the subgraph) for

the entire network. This “extension” synthesis procedure utilizes a symmetry property of

the networked systems, that we refer to as patterned linear semigroup (see Section 3.2.1).

The remainder of the chapter is organized as follows. In §3.2 we introduce the problem

setup and motivation behind our work, and provide an overview of the related literature

(§3.2.2). In §3.3, we present and analyze the D3SPI algorithm, followed by the theoretical

analysis in §3.4. Illustrative examples are provided in §3.5, followed by concluding remarks

in §3.6.

1O(n3) complexity of solving the Algebraic Riccati Equation [Bini et al., 2011] and scalability issues of
Model Predictive Control [Camponogara et al., 2002] are among such examples.
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Figure 3.1: Addition of auxiliary links (dashed red) to the subgraph Gd during the policy learning

phase. The size of the subgraph depends on the maximum degree of the original graph G.

Notation. The operator diag(·) makes a square diagonal matrix out of the elements

of its argument; vech(·) on the other hand, takes a square matrix and stacks the lower left

triangular half (including the diagonal) into a single vector. We use N ≻ 0 (⪰ 0) to declare N

as a positive-(semi)definite matrix. The ith eigenvalue and spectral radius of M are denoted

by λi(M) and ρ(M); M is called Schur stable when ρ(M) < 1. We say that an n-dimensional

linear system parameterized by the pair (A,B) is controllable if the controllability matrix

C = [B AB . . . An−1B] has a full-rank. We denote the Kronecker product of two matrices

by⊗. For a block matrix F, by [F]rk we imply the rth row and kth column “block” component

with appropriate dimensions. An (undirected) graph is characterized by G = (VG, EG) where

VG is the set of nodes and EG ⊆ VG × VG denotes the set of edges. An edge exists from node

i to j if (the unordered pair) (i, j) ∈ EG; this is also specified by writing j ∈ Ni, where Ni is

the set of neighbors of node i. We designate the maximum degree of G by dmax(G). Finally,

the graph G can be represented using matrices such as the Laplacian LG or the adjacency

AG.
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3.2 Problem Setup

Consider a network of identical agents with interdependencies induced by a network-level

objective. In particular, we assume that the system contains N agents forming a graph

G = (VG, EG), where each node of the graph in VG represents a linear discrete-time system,

xi,t+1 = Axi,t +Bui,t, i = 1, 2, . . . , N, (3.1)

with xi,t ∈ Rn and ui,t ∈ Rm denoting the state and input of agent i at time-step t,

respectively. The unknown system matrices A ∈ Rn×n and B ∈ Rn×m are assumed to

form a controllable pair. The network dynamics can compactly be represented as,

x̂t+1 = Âx̂t + B̂ût, (3.2)

where x̂t ∈ RNn and ût ∈ RNm are comprised of the states and inputs of entire network,

x̂t =
[
x⊺
1,t . . . x

⊺
N,t

]⊺
, ût =

[
u⊺

1,t . . . u
⊺
N,t

]⊺
, with Â ∈ RNn×Nn and B̂ ∈ RNn×Nm are in

block diagonal forms Â = IN ⊗ A and B̂ = IN ⊗ B. The agents’ interconnections are

represented by edges EG ⊆ VG × VG that can facilitate a distributed feedback design. We

do not assume that G is necessarily connected; the motivation for this becomes apparent

subsequently. Let Ni denote the set of neighbors of node i in G (excluding itself). Then,

based on the underlying communication graph and for any choice of positive integers a and

b, we define a linear subspace of RaN×bN as,

UNa,b(G) :=
{
M ∈ RaN×bN | [M]ij = 0 if j ̸∈ Ni ∪ {i}, [M]ij ∈ Ra×b, i, j = 1, · · · , N

}
.

Without having access to the system parameters A and B, we are interested in designing

linear feedback gains, consistent with the desired sparsity pattern induced by the network,

using data generated by (3.2). More precisely, given an initial condition x̂1, the distributed

(structured) optimal control problem assumes the form,

minK̂

∑∞
t=1 x̂

⊺
t Q̂x̂t + û⊺

t R̂ût

s.t. (3.2), ût = K̂x̂t, K̂ ∈ UNm,n(G),
(3.3)
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where K̂ stabilizes the pair (Â, B̂) (i.e., ρ(Â + B̂K̂) < 1), R̂ = IN ⊗R and Q̂ = IN ⊗Q1 +

LG ⊗ Q2 for some given cost matrices Q1 ≻ 0, Q2 ⪰ 0, R ≻ 0. Note that Q̂ ∈ UNn,n(G)

is positive definite. Such interdependence induced through the cost has been considered in

a graph-based distributed control framework; see for instance [Borrelli and Keviczky, 2008;

Deshpande et al., 2011; Wang et al., 2017; Massioni and Verhaegen, 2009]. In a nutshell,

the first term in Q̂ encodes the cost pertinent to state regulation for each agent, while the

second term, captures the “disagreement” cost between the neighbors.2

In this work, we propose a data-guided suboptimal solution to (3.3) not relying on knowl-

edge of the system parameters Â and B̂. Indeed, unknown system parameters may further

complicate the considered setup. Instead, our approach relies on the system’s input-state

time series for synthesizing distributed feedback control on G. A summary of the challenges

for analyzing this problem is listed as follows: I) The constrained optimization problem in

(3.3) is in general NP-hard [Papadimitriou and Tsitsiklis, 1986]. Based on the complete

knowledge of the system parameters, this problem has been investigated under variety of

assumptions [Gupta et al., 2005; Rotkowitz and Lall, 2005; Bamieh et al., 2002; Borrelli and

Keviczky, 2008], or approached directly with the aid of projected gradient-based policy up-

dates [Mårtensson and Rantzer, 2009; Bu et al., 2019a]. II) In the meantime, policies obtained

via data-driven approaches, do not necessarily respect the hard constraints on K̂ ∈ UNm,n(G)

2One instance of such an interactive cost among agents appears in the cooperative game setup where
agent i aims to solve the minimization problem,

min
(ui,t)∞t=0∈ℓ2

Ji(x̂1, ût) = N

∞∑

t=0

(
x⊺
i,tQ1xi,t + u⊺

i,tRui,t +
∑

j∈Ni

(
xj,t − xi,t

)⊺
Q2

(
xj,t − xi,t

))
.

Then, it is well-known that the set of Pareto front solution of this game can be obtained by minimizing
the parametric cost function,

min
(u1,t)∞t=0,...,(uN,t)∞t=0∈ℓ2

N∑

i=1

αiJi(x̂1, ût),

parameterized by α1, . . . , αN where αi ∈ [0, 1] and
∑

i αi = 1 (see e.g. [Engwerda, 2005b]). Therefore, a
cost such as in (3.3) can be viewed as a special case of the fair Pareto optimal solution with the choice of
αi = 1/N for all i.
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posed in (3.3). In particular, we point out that “projection” onto the intersection of the

constraint imposed by the network and stabilizing controllers is not straightforward due to

the intricate geometry of the set of stabilizing controllers [Bu et al., 2020b]. III) Another

key challenge in adopting data-driven methods for the entire network is rooted in the “curse

of dimensionality” inherent in the design and analysis of large-scale systems. In fact, even

collecting data from the entire network can be prohibitive. IV) Finally, it is often impossible

in applications to pause the operation of the network for data collection or decision-making

purposes. Therefore, an attractive feature of a synthesis process for large networks would be

its online realizability.

3.2.1 Structures in the Problem and our Approach

As in this work the sparsity requirement K̂ ∈ UNm,n(G) is considered as a hard constraint for

control synthesis, and as such, the corresponding optimization is NP-hard in general, we shift

our attention from the optimal solution of (3.3) towards a “reasonable” suboptimal stabilizing

distributed controller with a reasonable computational cost. We begin by introducing a set

that plays an important role in our subsequent analysis. For any integer r ≥ 2, first consider

the following linear subspace of Rrn×rn:

L(r × n,R) :=
{
Nr

∣∣Nr = Ir ⊗ (A−B) + 1r1
⊺
r ⊗B, A,B ∈ Rn×n}.

Now, we define the patterned linear semigroup as3

PL(r × n,R) :=
{
Nr ∈ L(r × n,R) ∩GL(rn,R)

∣∣ A ∈ GL(n,R) ∩ Sn, B ∈ Sn
}
,

where Sn denotes the set of symmetric n × n matrices. We note that the patterned linear

semigroup PL(r×n,R) is a sub-semigroup of GL(rn,R), and L(r×n,R) is a linear subspace

3The proposed patterned linear semigroup and characterizing its interplay with the Lyapunov equation
is considered as a key contribution in our approach. Note that, despite the claim in [Talebi et al., 2021a],
PL(r × n,R) requires further refinement to become a linear “subgroup” of GL(rn,R). Nonetheless, the
current characterization is sufficient for our purposes and further extensions are deferred to our future
work.
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of Rrn×rn, closed under matrix multiplication; see the proof of Lemma 3.13. The following

observation underscores the relevance of patterned linear semigroup in system analysis.

Proposition 3.1. For a Schur stable matrix A ∈ L(r × n,R) and 0 ≺ Q ∈ Srn, let P

denote the unique solution to the corresponding discrete-time Lyapunov equation, i.e., P =

A⊺PA+Q. Then, P ∈ PL(r × n,R) if and only if Q ∈ PL(r × n,R).

The invariance of the Lyapunov equation under the action of patterned linear semigroup

has important implications for our data-driven synthesis for large-scale networks; see Propo-

sition 3.5 and its implications in Algorithm 3.1.

In what follows, we summarize the key ingredients of our approach to distributed data-

driven policy iteration: I) Inspired by a Q-learning-based policy iteration algorithm, we

propose a model-free structured policy iteration scheme for obtaining “reasonable” perfor-

mance for the synthesis problem (3.3). The main challenge with this approach is to ensure

obtaining policies that conform to the sparsity constraint K̂ ∈ UNm,n(G) at each iteration.

This issue is particularly relevant when an arbitrary “projection” of the iterated policy on

the set UNm,n(G) fails to be stabilizing, reflecting the intricate geometry of the set of stabilizing

controllers [Bu et al., 2020b]. In order to overcome this challenge, we propose learning two

distinct facets of control, resembling the “individual” and “cooperative” components. In this

direction, we simultaneously learn a stability margin for each of these components, allowing

us to extend the synthesis procedure to the entire network. II) Inherent to our algorithm is

a synthesis subproblem whose dimension is related only to the maximum node in underlying

graph rather than the dimension of the original network. In particular, we will reason that

for the learning phase, our method only requires data collection from a (specific) smaller

sub-network Gd ⊆ G with size d = dmax(G) + 1. This subgraph is substantially smaller than

the original graph whenever dmax(G) is significantly smaller than N , reflecting the empirical

feature of many real-world networks. III) Finally, we note that terminating distributed pro-

cesses on real-world networks for the purpose of data collection is often infeasible. As such,

we allow temporary links on the subgraph Gd only during the learning phase of the proposed
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algorithm—links that are subsequently removed. We note that for the learning phase, our

method requires observations only from this portion of the graph where temporary links are

augmented in order to make Gd a clique. The distributed control underpinnings of method

proposed in this work follows its model-based analogue previously studied in [Borrelli and

Keviczky, 2008; Wang et al., 2017]. In this work, our aim is to extend the setup proposed

in these aforementioned works to propose a model-free structured policy iteration algorithm

which is not only computationally efficient, but also practical for large-scaled networked

systems.

3.2.2 Related Literature

Distributed control is a well-established area of research in systems theory. The roots of

the field trace back to the socioeconomics literature in 1970’s [McFadden, 1969] and early

works in the control literature followed suite later during that decade [Wang and Davison,

1973]. The main motivation for these works was lack of scalability in centralized planning and

control, due to information or computational limitations [Sandell et al., 1978; Ioannou, 1986].

Fast forward a few decades, sufficient graph-theoretic conditions were provided for stability of

formations comprised of identical vehicles [Fax and Murray, 2004] and, along the same lines,

graph-based distributed controller synthesis was further examined independently in works

such as [Massioni and Verhaegen, 2009; Deshpande et al., 2012; Borrelli and Keviczky, 2008;

Mårtensson and Rantzer, 2009]. The topic was also studied from the perspective of spatial

invariance [Bamieh et al., 2002; Motee and Jadbabaie, 2008] and a compositional layered

design [Chapman et al., 2017; Alemzadeh and Mesbahi, 2018]. Moreover, from an agent-

level perspective, the problem has been tackled for both homogeneous systems [Massioni

and Verhaegen, 2009; Borrelli and Keviczky, 2008; Wang et al., 2017] and more recently

heterogeneous ones [Stürz et al., 2021].

Having access to the underlying system model is a common assumption in the litera-

ture on distributed control, where the goal is to find a distributed feedback mechanism that

conforms to an underlying network topology. However, deriving dynamic models from first
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principles could be restrictive for large-scale systems. Such restrictions also hold for paramet-

ric perturbations that occur due to inefficient modeling or other unknown design factors. For

instance, even the LQR solution with its strong input robustness properties, may have small

stability margins for general parameter perturbations [Dorato et al., 1994]. Robust synthesis

approaches could alleviate this issue when the perturbations follow specific models, in both

centralized [Khargonekar et al., 1990] and distributed [Li et al., 2012] cases. However, if

the original estimates of system parameters are inaccurate or the perturbations violate the

presumed model, then both stability and optimality of the proposed feedback mechanisms

can be compromised. Data-driven control, on the other hand, circumvents such drawbacks

and utilize the available data generated by the system when its model is unavailable. This

point of view has historically been examined in the context of adaptive control and system

identification [Ljung, 1999], particularly, when asymptotic properties of the synthesized sys-

tem are of interest. For more recent works that have adopted a non-asymptotic outlook on

data-driven control, we mention [Van Waarde et al., 2020; Alaeddini et al., 2018; Dean et al.,

2019a] that used batched data for synthesis, as well as online iterative procedures [Talebi

et al., 2020; Oymak and Ozay, 2019]. Furthermore, in regards to the adaptive nature of such

algorithms, there is a close connection between online data-driven control and reinforcement

learning [Lewis et al., 2012; Bradtke et al., 1994]. In these latter works, policy iteration

has been extended to approximate LQR by avoiding the direct solution of Algebraic Riccati

Equation (ARE); yet majority of these works do not have favorable scaling properties.

Control and estimation for large-scale systems offers its unique set of challenges due

higher levels of uncertainty, scalability issues, and modeling errors. Nevertheless, model-

free synthesis for large-scale systems, as a discipline, is still in its infancy. From a control

theoretic perspective, the work [Luo et al., 2019] addresses some of the aforementioned issues

using ideas from mean-field multiagent systems and with the key assumption of partial

exchangeability. The work [Alemzadeh and Mesbahi, 2019] on the other hand, provides

a decentralized LQR algorithm based on network consensus that has low complexity, but

potentially a high cost of implementation. Lastly, SDP projection-based analysis has been
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examined in [Chang and Shahrampour, 2021], where each agent will have a sublinear regret as

compared with the best fixed controller in hindsight. The problem has also been considered

from a game-theoretic standpoint [Li et al., 2017; Talebi et al., 2019; Nowé et al., 2012],

where agents can have conflicting objectives.

3.3 Algorithm: Distributed Data-driven Structured Policy Iteration (D3SPI)

In this section, we present and discuss the main algorithm of the chapter, namely, D3SPI.

Given the underlying communication graph G, the networked system is considered as a

black-box, whereas the designer is capable of inserting input signals to the system and

observe states. The goal of D3SPI is then to find a data-guided suboptimal solution for

(3.3) without knowledge of system parameters Â and B̂. To this end, our approach involves

considering the synthesis problem on a subgraph Gd ⊆ G, with the associated time-series

data. Before presenting the main algorithm, we formalize two useful notions in order to

facilitate the presentation.

Definition 3.2. Given a subgraph G ′ ⊆ G and a node labeling, let Policy (VG′) denote the

concatenation of policies of the agents in VG′ , i.e.,

Policy (VG′) := [u⊺
1 u⊺

2 · · · u⊺
|VG′ |]

⊺,

where ui is the feedback control policy of agent i in the subgraph G ′ as a mapping from

{xj|j ∈ Ni∪{i}} to Rm. Furthermore, we use Policy(VG′)|t to denote the realization of these

policies at time t. Similarly, we define,

State (VG′) := [x⊺
1 x⊺

2 · · · x⊺
|VG′ |]

⊺.

The D3SPI algorithm is introduced in Algorithm 3.1 with the following standard assump-

tion.

Assumption 3.3. The initial controller K1 is stabilizing for the controllable pair (A,B),

and et in Algorithm 3.2 is such that Policy(VG′)|t remains persistently exciting.
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We refer to the main loop of the algorithm in Line 5 as the learning phase. During the

learning phase, we include temporary “auxiliary” links to Gd and make the communication

graph a clique. We show such distinction by Gd,learn, where |VGd
| =

∣∣VGd,learn

∣∣ but Gd,learn is a

clique. Inherent to D3SPI is a policy iteration on Gd,learn that characterizes components Kk

and Lk, intuitively representing “self” and “cooperative” controls at iteration k, respectively.

In particular, during the learning phase, we utilize these control components in order to

design and update an effective stabilizing controller for the rest of the network G \ Gd,learn.

We do so by ensuring that during the learning phase, information is exchanged uni-

directionally from Gd,learn to the rest of the network; hence, the policy of the agents in

G \ Gd,learn is dependent on those in Gd,learn, and not vice versa. After the learning phase

terminates, we remove the temporary links added during the learning phase (re-initialize to

the original network), and synthesize a suboptimal stabilizing control for the entire network.

In the learning phase of D3SPI, we use a Recursive Least Squares (RLS)-based recursion

to estimate the unknown parameters in the cost matrix at iteration k, referred to as H̃k.

This process is performed in Subgraph Policy Evaluation (SPE) (Algorithm 3.2) subroutine

by inputting (sub-)graph G, Gd,learn, the mapping policy(VGd
), and the previous estimate

of H̃k−1. As will be discussed in Section 3.4.1, H̃k contains the required information to

determine the two control components Kk and Lk from the data. We extract this square

matrix through a recursive update on the vector θk−1, derived from half-vectorization of

H̃k−1, solving RLS for the linear equation R(x̃t, ũt) = ζ⊺
tθk−1, where R(x̃t, ũt) denotes the

local cost and ζt ∈ Rp contains the data measurements. We use subscript k for policy update

and t for data collection. The adaptive nature of the algorithm involves the exploration signal

et to be augmented to the policy vector in order to provide persistence of excitation.

In our setup, et is sampled from a normal distribution e ∼ N (0,Σ) where the choice of

the variance Σ is problem-specific. In practice, excitation of the input is a subtle task and

has been realized in a variety of forms such as random noise [Bradtke et al., 1994], sinusoidal

signals [Jiang and Jiang, 2012], and exponentially decaying noise [Lewis and Vamvoudakis,

2010]. We denote by P the projection factor that is reset to P0 ≻ 0 for each iteration. Con-
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Algorithm 3.1: Distributed Data-driven Structured Policy Iteration (D3SPI)

1: Initialization (t← 1, k ← 1, τ1 ← 0,Σ← I)

2: Choose Gd ⊆ G with d = dmax(G) + 1. Get Q1, Q2, R, and set Qd ← Q1 + dQ2

3: Set P0 ← βIp(p+1)/2 for large β > 0, K1 stabilizing (3.1), L1 = 0, and ∆K1 = K1

4: Get x̃1 ∈ Rdn and H̃0 ∈ Rp×p, p = d(n+m) and turn on temporary links in Gd
5: While (Kk, Lk) has not converged, do (“learning phase”)

6: Set Policyk(VG) such that for each i ∈ VG ,

ui ← ∆Kkxi + Lk
∑

j∈Ni

τk
d−1xj , if i ∈ VG\Gd

ui ← ∆Kkxi + Lk
∑

j∈VGd
xj , if i ∈ VGd

7: Evaluate H̃k from Algorithm 3.2: H̃k ← SPE
(
G, Gd,learn, Policyk(VG), H̃k−1,P0

)

8: Recover X1, X2, Y1, Y2, Z1 and Z2 from H̃k

X1 ← H̃k[1 : n, 1 : n], Y1 ← H̃k[dn+ 1 : dn+m, dn+ 1 : dn+m]

X2 ← H̃k

[
1 : n, n+ 1 : 2n

]
, Y2 ← H̃k[dn+ 1 : dn+m, dn+m+ 1 : dn+ 2m+ 1]

Z1 ← H̃k[dn+ 1 : dn+m, 1 : n], Z2 ← H̃k[dn+ 1 : dn+m, n+ 1 : 2n]

∆X ← X1 −X2, ∆Y ← Y1 − Y2, ∆Z ← Z1 − Z2.

9: Update the control components

F−1 ← Y1 − (d− 1)Y2
(
Y1 + (d− 2)Y2

)−1
Y2, G← (Y1 + (d− 1)Y2)

−1 Y2 (Y1 − Y2)−1

Kk+1 ← −FZ1 + (d− 1)GZ2, Lk+1 ← −FZ2 +GZ1 + (d− 2)GZ2, ∆Kk+1 ← Kk+1 − Lk+1

10: Obtain the stability margin τk+1 ←
√
γ2k+1/(1 + γk+1) by updating

Ξk+1 ←∆X −Qd +∆K⊺
k+1∆Z +∆Z⊺∆Kk+1 +∆K⊺

k+1

(
∆Y −R

)
∆Kk+1

γk+1 ←λmin

(
∆K⊺

k+1R∆Kk+1 +Qd

)/
λmax

(
Ξk+1 + L⊺

k+1(∆Y −R)Lk+1

)

11: Go to Line 5 and set k ← k + 1

12: Switch OFF the temporary links and retrieve Gd
13: Set Policyk(VG) such that for each i ∈ VG , ui ← ∆Kkxi +

τk
d−1Lk

∑
j∈Ni

xj
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vergence of SPE—guaranteed based on the persistence of excitation condition—is followed

by the update of H̃k that encodes the necessary information to obtain Kk and Lk. This

is achieved by recovering the block matrices X1, X2, Y1, Y2, Z1, and Z2 from H̃k that are

further utilized to form intermediate variables F and G. Matrix inversions on line 9 of Al-

gorithm 3.1 will be justified in Section 3.4 Lemma 3.13. Such recovery of meaningful blocks

from H̃k is due to the specific matrix structure resulting from adding extra links to Gd; this

point will be discussed further subsequently. Each iteration loop is completed by updating

the parameters γk and τk, that prove instrumental in the stability analysis of the proposed

controller. With the convergence of D3SPI, Gd is retrieved by removing the temporary links

and the structured policy is extended to the entire graph G.

Let us point out a few remarks on the computational complexity of the proposed algo-

rithm. First, note that the inverse operations on line 9 occur on matrices of size m × m,

and hence computationally inexpensive. Furthermore, the complexity of finding extreme

singular values—as on line 10 in Algorithm 3.1—is known to be O(n2) [Comon and Golub,

1990]. Hence, the computational complexity of D3SPI is mainly due to the SPE recursion

that is equivalent to the complexity of RLS for the number of unknown system parameters

in Gd, i.e., the computational cost is O (d2(n+m)2) [Haykin, 2002]. This implies that the

computational complexity of the algorithm is fixed for any number of agents N , as long as

the maximum degree of the graph retains its order.

Remark 3.4. Adding temporary links within the subgraph Gd is an effective means of learning

optimal Kk and Lk for the subgraph Gd,learn by utilizing dynamical interdependencies among

the agents. Although initializing Kk such that (3.1) is Schur stable is a standard assumption

in data-driven control, obtaining this initial gain for an unknown system is nontrivial. While

we invoke this assumption in this work, the interested reader is referred to [Talebi et al.,

2020; Chen and Hazan, 2020] for more recent works pertaining to this assumption and related

system theoretic issues [Yu et al., 2021].
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3.4 Analysis of D3SPI

In this section, we provide convergence and stability analyses for the D3SPI algorithm. In

this direction, we first study the structure and stability margins of each local controller and

proceed to establish stability properties of the proposed controller for the entire network

throughout the learning process. Lastly, we show the convergence of D3SPI to a stabiliz-

ing suboptimal distributed controller followed by the derivation of a suboptimality bound

characterized by the problem parameters. For clarity, we defer some of the subtleties of the

analysis and detailed proofs to the end of this section.

First, let us demonstrate how a specific structure and stability of the controller for the

subgraph Gd,learn, when properly initialized, can be preserved throughout the D3SPI algo-

rithm.

Proposition 3.5. Let K̃k := Id⊗
(
Kk−Lk

)
+11

⊺⊗Lk for all k ≥ 1, with Kk and Lk as in

Algorithm 3.1. Under Assumption 3.3 and throughout the learning phase (for all k ≥ 1), K̃k

is stabilizing for the system in Gd,learn and Policyk(VGd,learn
)|t = K̃k State(VGd,learn

)|t, for all t.

Furthermore, ∆Kk := Kk − Lk stabilizes the dynamics of a single agent, i.e., A+ B∆Kk is

Schur stable.

Note that Proposition 3.5 proves the existence of a stabilizing controller ∆Kk and its

corresponding cost-to-go matrix ∆Pk. In the sequel, our goal is to design a distributed

suboptimal controller for the entire networked system on G based on the components that

shape ∆Kk. This extension is built upon the stability margin derived next.

Proposition 3.6. At each iteration k ≥ 1, let Kk, Lk and τk be obtained via Algorithm 3.1.

Then, A+B(Kk − αLk) is Schur stable for all α satisfying |α− 1| ≤ τk.

The stability margin τk in Proposition 3.6 is upper-bounded by the stability margin of the

pair (A + B(Kk − Lk), B). This implies that if the original closed-loop system for an agent

does not have a favorable stability margin, then τk can be small–reducing the influence of the
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agent’s neighbors on its policy (Line 13 of Algorithm 3.1). Nonetheless, Proposition 3.6 pro-

vides model-free stability gain margins τk at each iteration of the algorithm for the dynamics

of a single agent in G. In our analysis, we take advantage of these margins to characterize

stability guarantees for the controller proposed during the learning phase of D3SPI. This is

captured in the following result.

Theorem 3.7. Suppose Kk, Lk and τk are defined as in Algorithm 3.1. Then, under Assump-

tion 3.3, the control policy Policyk(VG) designed during the learning phase (line 6) stabilizes

the network G at each iteration of the learning phase and for any choice of VGd
.

Theorem 3.7 establishes that the proposed feedback mechanism stabilizes the entire net-

work, facilitating control of agents outside of Gd, during the learning phase. In the meantime,

the practicality and suboptimality of the algorithm depend on its convergence addressed next.

Theorem 3.8. Under Assumption 3.3 and (long enough) finite termination of Algorithm 3.2,

Algorithm 3.1 converges, i.e., Kk → K∗, Lk → L∗, and τk → τ ∗ as k → ∞, where K̃∗ =

Id ⊗
(
K∗ − L∗) + 11

⊺ ⊗ L∗ is the optimal solution to the infinite-horizon state-feedback

LQR problem with system parameters
(
Ã, B̃, Q̃, R̃

)
defined as Ã = Id ⊗ A, B̃ = Id ⊗ B,

Q̃ = Id ⊗ (Q1 + dQ2)− 11
⊺ ⊗Q2, and R̃ = Id ⊗R.

Finally, we note that as the temporary links introduced during the learning phase are

removed, the structure of the agents’ interaction is once again the original network G. As

such, it is vital to provide stability guarantees after Algorithm 3.1 terminates and components

of the control design have converged. This issue is addressed in the following corollary whose

proof is similar to that of Theorem 3.7 and thus omitted for brevity.

Corollary 3.9. Suppose that K∗, L∗, γ∗, and τ ∗ are given as in Theorem 3.8 under a con-

vergent Algorithm 3.1. Then Policy(VG) (defined on Line 13), stabilizes the entire networked

system in (3.2).

We conclude this section by exploring the suboptimality of the proposed policy. Given

the problem parameters, let K̂∗
struc denote the globally optimal distributed solution for the
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Algorithm 3.2: Subgraph Policy Evaluation (SPE)

1: Input: Graph G, subgraph G′ ⊆ G, Policy(VG), H, P
2: Output: Updated cost matrix H+ associated with G′

3: While H has not converged, do

4: Set x̃t ← State(VG′)|t and ũt ← Policy(VG′)|t
5: Choose et ∼ N (0,Σ) and update Policy(VG′)|t as ũt ← ũt + et for all i ∈ VG′

6: Run G under policy Policy(VG)
7: Collect State(VG′)|t+1 only from G′ and set

x̃t+1 ← State(VG′)|t+1, ũt+1 ← Policy(VG′)|t+1

8: Set

ϕt ← [x̃⊺
t ũ⊺

t ]
⊺ − [x̃⊺

t+1 ũ⊺
t+1]

⊺

9: Compute ζt = vech(ϕtϕ
⊺
t ) and

R(x̃t, ũt) = x̃⊺
t

(
I⊗Qd − 11⊺ ⊗Q2

)
x̃t + ũ⊺

t

(
I⊗R

)
ũt

10: Set θ ← vech(H) and update

θ ←θ + Pζt
(
R(x̃t, ũt)− ζ⊺t θ

)/
(1 + ζ⊺tPζt),

P ←P − Pζtζ⊺tP
/
(1 + ζ⊺tPζt)

11: Find H+ = vech−1(θ), update H← H+ and t← t+ 1
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structured LQR problem in (3.3) with the associated cost matrix P̂∗
struc. Given any other

stabilizing structured policy K̂ associated with cost matrix P̂, we define the optimality gap as

gap(K̂) := Tr[P̂− P̂∗
struc]. The following theorem provides an upperbound on the optimality

gap of structured policy learned by D3SPI based on the problem parameters. In particular,

when the system is “contractible,” the derived upperbound depends on the difference of the

distributed controller with that of unstructured optimal LQR controller.

Theorem 3.10. Let K̂∗ be the structured policy learned by Algorithm 3.1 at convergence,

corresponding to the cost matrix P̂∗. Moreover, let K̂lqr denote the optimal (unstructured)

solution to the infinite-horizon state-feedback LQR problem with parameters (Â, B̂, Q̂, R̂)

with the cost matrix P̂lqr. If ÂK̂lqr
= Â + B̂K̂lqr is contractible then 0 ≤ gap(K̂∗) ≤

Tr(M)/[1− σ2
max(ÂK̂lqr

)], where M := (R̂ + B̂⊺P̂∗B̂)(K̂∗K̂∗⊺ − K̂lqrK̂
⊺
lqr) + 2Â⊺P̂∗B̂(K̂∗ −

K̂lqr).

Remark 3.11. First, note how the converged policy by Theorem 3.8 is related to the optimal

LQR policy on the fully connected subgraph Gd,learm. Second, contractibility of the pair

(A,B) is more restrictive than regularizability of the system [Talebi et al., 2020], a notion

that has recently been employed in iterative data-guided control methods [Lale et al., 2020b;

Agarwal et al., 2019]. Contractibility also facilitates the validity of assuming access to the

initial stabilizing controller.

Next, we provide the building blocks needed for the proofs and analysis of our algorithm.

We first provide some insights on how the setup is connected to the classic model-based LQR

machinery and some previously established results that we leverage from the literature. The

main proofs then follows.

3.4.1 Underlying Model of the Subsystem Gd

The configuration of the synthesis problem in D3SPI intertwines an online recursion on

the subsystem corresponding to Gd and the original system G. In particular, during the

learning phase, considering the same cost structure and problem parameters as in (3.3)—but
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for the completed subgraph Gd,learn— results in the
(
Ã, B̃, Q̃, R̃

)
parameters as defined in

Theorem 3.8. Then, similarly from (3.1) the dynamics of the subgraph Gd,learn assumes the

form,

x̃t+1 = Ãx̃t + B̃ũt, (3.4)

where x̃t and ũt are formed from concatenation of state and control signals in Gd,learn—

recall that ũt is also denoted by Policy(VGd,learn
)|t in the algorithm to emphasize the temporal

implementation of a specific policy in Algorithm 3.2. From the Bellman equation [Bellman,

1966] for the LQR problem with these parameters, the cost matrix P̃k of Gd,learn is correlated

with the one-step LQR cost as,

x̃⊺
t P̃kx̃t = R(x̃t, ũt) + x̃⊺

t+1P̃kx̃t+1, (3.5)

where R(x̃t, ũt) = x̃⊺
t Q̃x̃t + ũ⊺

t R̃ũt and P̃k satisfies the Lyapunov equation,

P̃k =
(
Ã + B̃K̃k

)⊺
P̃k

(
Ã + B̃K̃k

)
+ Q̃ + K̃⊺

kR̃K̃k, (3.6)

and K̃k is the controller policy at iteration k. The dynamic programming solution to the

LQR problem suggests a linear feedback form ũt = K̃kx̃t for the subsystem Gd,learn at each

iteration. Combining (3.4) and (3.5) with some rearrangements result in

x̃⊺
t P̃kx̃t = z̃⊺t


Q̃ + Ã⊺P̃kÃ Ã⊺P̃kB̃

B̃⊺P̃kÃ R̃ + B̃⊺P̃kB̃


 z̃t

=: z̃⊺t


[H̃k]11 [H̃k]12

[H̃k]21 [H̃k]22


 z̃t = z̃⊺t H̃kz̃t, (3.7)

where z̃t = [x̃⊺
t ũ⊺

t ]
⊺. Then, the following policy update (due to Hewer) is guaranteed to

converge to the optimal LQR policy under controllability assumption [Hewer, 1971]:

K̃k+1 = −
(
R̃ + B̃⊺P̃kB̃

)−1

B̃⊺P̃kÃ = −[H̃k]
−1
22 [H̃k]21, (3.8)
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which is also reconstructed by information in H̃k. Furthermore, the cost matrix in (3.6) can

also be reconstructed by the same information:

P̃k = [H̃k]11 + [H̃k]12K̃k + K̃⊺
k[H̃k]21 + K̃⊺

k[H̃k]22K̃k. (3.9)

Hence, H̃k provides the required information to perform both policy update and policy

evaluation steps in a policy iteration algorithm. We will see that because of the particular

structure of our setup, H̃k enjoys a special block pattern captured by the proposed patterned

linear semigroup, justifying the recovery of the block matrices X1, X2, Y1, Y2, Z1, and Z2 from

H̃k in D3SPI. D3SPI leverages this idea to implicitly learn H̃k from data (by adapting the

idea of [Bradtke et al., 1994]) and exploit these matrix blocks in order to find a suboptimal

solution to the main distributed problem in (3.3).

Here, in addition to the policy update from data as in (3.8), we show that the same infor-

mation can be used to also learn a gain margin directly from data (see Proposition 3.6). This

gain margin is then used to guarantee the stability of the entire network (see Theorem 3.7).

Finally, for technical reasons, recall that the infinite-horizon state-feedback LQR problem

with parameters (A,B,Q,R) can be cast as the minimization of

fΣ(K) := Tr [PKΣ] (3.10)

over the static stabilizing policy K, for some initial state distribution with covariance Σ ≻ 0,

where PK is cost matrix associated withK satisfying the following Lyapunov equation [Levine

et al., 1971; Mårtensson and Rantzer, 2009; Bu et al., 2019a]:

PK = (A+BK)⊺PK(A+BK) +Q+K⊺RK.

Herein, we set Σ = I and consider fI(K).

3.4.2 Main Theoretical Results

In the remainder of this section, we first restate some well-known facts to make the chapter

self-contained, and then propose a few additional algebraic facts for our analysis whose proofs

are deferred to Appendix 3.4.3. We then continue with the proof of the main results.
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Lemma 3.12. The following relations hold:

1. ([Horn and Johnson, 2012]) When X ≻ 0,

M⊺XN +N⊺XM ⪰ −(aM⊺XM +
1

a
N⊺XN),

M⊺XN +N⊺XM ⪯ aM⊺XM +
1

a
N⊺XN,

where M,N ∈ Rn×m with n ≥ m and a > 0.

2. ([Lancaster, 1970, Lyapunov Equation]) Suppose that A ∈ Rn×n has spectral radius

less than 1, i.e., ρ(A) < 1. Then A⊺XA + Q − X = 0 has a unique solution, X =
∑∞

j=0(A
⊺)jQAj. In this case, if Q ≻ 0, then X ≻ 0.

3. ([Horn and Johnson, 2012, Block matrix inverse forluma (0.8.5.6)]) The following

equation holds for matrices A, B, C, and D with compatible dimensions,


A B

C D




−1

=


 H−1 −H−1BD−1

−D−1CH−1 D−1 +D−1CH−1BD−1


 ,

where D and H = A−BD−1C are invertible.

4. (Matrix Inversion Lemma [Woodbury, 1950]) The following holds,

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1,

for matrices A, U , C, and V with compatible dimensions where A, C, and A + UCV

are invertible.

Finally, we provide the main technical lemma that streamlines the properties of the

patterned linear semigroup under algebraic manipulation which will be frequently used in

the proof of Proposition 3.5 and Theorem 3.8.

Lemma 3.13. Suppose Nr ∈ PL(r × n,R) for some n and r ≥ 2 such that Nr = Ir ⊗
(
A−

B
)

+ 1r1
⊺
r ⊗B, for some A ∈ GL(n,R) ∩ Sn×n and B ∈ Sn×n. Then the following hold:
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1. det(Nr) = det(A−B)r−1 det(A+ (r − 1)B).

2. If Nr ≻ 0, then we have A + (ℓ − 1)B ≻ 0 for all ℓ = 0, 1, · · · , r. Furthermore,

A− ℓB (A+ (ℓ− 1)B)−1B is invertible for ℓ = 1, 2, · · · , r − 1.

3. If Nr ≻ 0, then N−1
r ∈ PL(r × n,R), i.e.,

N−1
r = Ir ⊗

(
Fr +Gr

)
− 1r1

⊺
r ⊗Gr,

with Fr and Gr defined as,

Fr =
(
A− (r − 1)B

(
A+ (r − 2)B

)−1
B
)−1

,

Gr =
(
A+ (r − 1)B

)−1
B
(
A−B

)−1
.

4. If Mr = Ir ⊗
(
C −D

)
+ 1r1

⊺
r ⊗D then,

NrMr = Ir ⊗
(
A − B

)(
C − D

)
+ 1r1

⊺
r ⊗

(
B
(
C − D

)
+
(
A − B

)
D + rBD

)
.

Proof of Proposition 3.1

For any Schur stable matrix A, and any symmetric positive definite matrix Q there ex-

ists a unique positive definite solution P to the discrete Lyapunov equation described by

P =
∑∞

j=0(A
⊺)jQAj (Lemma 3.12.2). Note, that PL(r × n,R) ⊂ Srn×rn by construction.

Therefore, since PL(r×n,R) is a linear group, each summand also falls in PL(r×n,R) when-

ever Q ∈ PL(r × n,R). Thus, as the infinite sum preserves the structure, P ∈ PL(r × n,R)

whenever Q ∈ PL(r × n,R). Conversely, if P ∈ PL(r × n,R), then Q = P − A⊺PA⊺ also

must lie in PL(r × n,R) as Q ≻ 0. This completes the proof. □

Proof of Proposition 3.5

At iteration k of the learning phase in Algorithm 3.1, the first claim is a direct consequence

of the structure of Gd,learn during the learning phase, where Gd,learn = K (Gd) and hence
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ui = (Kk −Lk)xi +Lk
∑

j∈VGd,learn
xj for all i ∈ VGd,learn

, which, in turn, results in ũt = K̃kx̃t

with K̃k as claimed. The stability of the policy K̃k for the pair (Ã, B̃) throughout the

learning phase is then argued in Section 3.4.2 under Assumption 3.3.

Next, the cost matrix P̃k associated with K̃k satisfies the Lyapunov equation (3.6). We

can verify that Ã + B̃K̃k ∈ L(d × n,R) which is also Schur stable, and Q̃ + K̃⊺
kR̃K̃k ∈

PL(d× n,R). Thus, by Proposition 3.1, we conclude that P̃k ∈ PL(d× n,R). So, let

P̃k = Id ⊗
(
P1 − P2

)
+ 11

⊺ ⊗ P2, (3.11)

for some P1, P2. Note that K̃k is stabilizing and Q̃ + K̃⊺
kR̃K̃k ≻ 0, therefore P̃k ≻ 0 from

(3.6). But then, by Lemma 3.13.Item 2 and the structure of P̃k from (3.11), we claim that

∆Pk := P1 − P2 ≻ 0. Next, one can also verify that

(
Ã + B̃K̃k

)⊺
P̃k

(
Ã + B̃K̃k

)
= Id ⊗

(
A⊺

∆Kk
(∆Pk)A∆Kk

)
+ 11

⊺ ⊗ (⋆),

Q̃ + K̃⊺
kR̃K̃k = Id ⊗

(
Qd + (∆Kk)

⊺R(∆Kk)
)

+ 11
⊺ ⊗ (⋆),

where ∆Kk = Kk−Lk, A∆Kk
= A+B(∆Kk), Qd = Q1 +dQ2, and (⋆) is hiding extra terms.

But then, by (3.6) and (3.11) we obtain that ∆Pk must satisfy:

∆Pk = A⊺
∆Kk

(∆Pk)A∆Kk
+Qd + ∆K⊺

kR∆Kk, (3.12)

which itself is a Lyapunov equation. Finally, since Qd + ∆K⊺
kR∆Kk ≻ 0 and ∆Pk ≻ 0, by

Lyapunov Stability Criterion we conclude that A∆Kk
is Schur stable. This completes the

proof. □

Proof of Proposition 3.6

Define the Lyapunov candidate function Vk(xt) = x⊺
t∆Pkxt with ∆Pk ≻ 0 as in (3.12) and

where xt contains the states of the closed-loop system xt+1 =
(
A+B(Kk−αLk)

)
xt for some

scalar α. We show that for the given choice of α, Vk is decreasing. We define

∆Vk(xt) := Vk(xt+1)− Vk(xt) = x⊺
tΓkxt,
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where

Γk = (A∆Kk
+ (1− α)Lk)

⊺ ∆Pk (A∆Kk
+ (1− α)Lk)−∆Pk.

Suppose α < 1, then from (3.12),

Γk =− (Qd + ∆K⊺
kR∆Kk) + (1− α)2L⊺

kB
⊺∆PkBLk

+ (1− α)
(
A⊺

∆Kk
∆PkBLk + L⊺

kB
⊺∆PkA∆Kk

)

⪯− (Qd + ∆K⊺
kR∆Kk) + (1− α)2L⊺

kB
⊺∆PkBLk

+ (1− α)
(
aA⊺

∆Kk
∆PkA∆Kk

+ (1/a)L⊺
kB

⊺∆PkBLk
)

=−
(
Qd + ∆K⊺

kR∆Kk

)
+ (1− α)aA⊺

∆Kk
∆PkA∆Kk

+ (1− α) (1/a+ 1− α)L⊺
kB

⊺∆PkBLk

where the inequality holds for any a > 0 due to Lemma 3.12. Let β = (1− α)/2 and choose

a = β +
√
β2 + 1. Then, (1/a+ 1− α) = a and thus

λmax(Γk) ≤ −λmin

[
Qd + ∆K⊺

kR∆Kk

]
+ (1 − α)aλmax

[
A⊺

∆Kk
∆PkA∆Kk

+ L⊺
kB

⊺∆PkBLk
]

Now, using the parameters (3.13) constructing the blocks of (3.7), we obtain

L⊺
kB

⊺∆PkBLk =L⊺
k(∆Y −R)Lk,

A⊺
∆Kk

∆PkA∆Kk
=∆X −Qd + ∆K⊺

k∆Z + ∆Z⊺∆Kk +∆K⊺
k

(
∆Y −R

)
∆Kk =: Ξk.

Thus, the latter bound can be obtained completely from data as

λmax(Γk) ≤ ((1− α)a− γk)λmax [Ξk + L⊺
k(∆Y −R)Lk]

with

γk := λmin

[
Qd + ∆K⊺

kR∆Kk

]/
λmax [Ξk + L⊺

k(∆Y −R)Lk] ,

which coincides with updates in Line 10 of Algorithm 3.1.

Finally, from the hypothesis 1 − τk < α < 1 with τk =
√
γ2k/(1 + γk), we obtain that

γ2k − 4β2γk − 4β2 > 0. But, since γk > 0, this second-order term in γk is positive only if

γk > 2β2 + 2β
√
β2 + 1 = 2β(β +

√
β2 + 1) = (1− α)a.
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Therefore, ∆Vk(xt) < 0 for 1− τk < α < 1. Similar reasoning for 1 < α < 1 + τk also shows

that ∆Vk(xt) < 0 which completes the proof. □

Proof of Theorem 3.7

From Definition 3.2 (according to a consistent choice of labeling of the nodes so that the last

d nodes are chosen as Gd) and Proposition 3.5, the feedback policy in line 6 of Algorithm 3.1

can be cast in the compact form,

Policyk(VG) =


Policyk(VG\Gd,learn

)

Policyk(VGd,learn
)




=




K̂G\Gd
L̂G\Gd

0 K̃k





Statek(VG\Gd,learn

)

Statek(VGd,learn
)




=: K̂kStatek(G),

where L̂G\Gd
:= τk

d−1
[AG]12 ⊗ Lk, K̃k := Id ⊗ (Kk − Lk) + 1d1

⊺
d ⊗ Lk, K̂G\Gd

:= IN−d ⊗Kk −
(
IN−d − τk

d−1
AG\Gd

)
⊗ Lk, AG denotes the adjacency matrix of G, and [AG]12 is its submatrix

capturing the interconnection of G \ Gd and Gd:

AG =


AG\Gd

[AG]12

∗ AGd


 .

Note that the structure of K̂k emanates from the fact that the information exchange is

unidirectional during the learning phase. Now consider the closed-loop system of G,

ÂG|cl := Â + B̂K̂k =


 IN−d ⊗ A+

(
IN−d ⊗B

)
K̂G\Gd

(
IN−d ⊗B

)
L̂G\Gd

0 ÃK̃k


 ,

where ÃK̃k
:= Ã + B̃K̃k is the closed-loop system of Gd. Define S = IN−d − τk

d−1
AG\Gd

and

let J be the Jordan form of S according to the similarity transformation T ∈ R(N−d)×(N−d)
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such that T ST −1 = J . Now consider the following similarity transformation of ÂG|cl,


T ⊗ In 0

0 Id ⊗ In



(
ÂG|cl

)

T ⊗ In 0

0 Id ⊗ In




−1

=


 IN−d ⊗

(
A+BKk

)
− J ⊗BLk ∗

0 ÃK̃k


 .

Note that IN−d ⊗
(
A+BKk

)
− J ⊗BLk is a block upper triangular matrix whose diagonal

blocks are equal to A + B(Kk − λi(S)Lk) for i = 1, · · · , N − d. We already know from

Proposition 3.5 that ÃK̃k
is Schur stable. Hence, in order to show that ÂG|cl is Schur sta-

ble, it suffices to show that ρ (A+B(K − λi(S)L)) < 1 for i = 1, · · · , N − d. Recall that

|λi(AG)| ≤ dmax [Bollobás, 2013], thus by definition of S and the fact that dmax = d − 1,

we conclude that |λi(S)− 1| ≤ τk. The rest of the proof now follows directly from Proposi-

tion 3.6. □

Proof of Theorem 3.8

At iteration k of the learning phase in Algorithm 3.1, consider H̃k and its corresponding

blocks as defined in (3.7). First, we consider the structure of the stabilizing feedback policy

K̃k as shown in Proposition 3.5, together with that of system parameters (Ã, B̃, Q̃, R̃), and

apply Lemma 3.13 and Proposition 3.1 to conclude that [H̃k]11, [H̃k]22 ∈ PL(d × n,R) and

[H̃k]21 ∈ L(d× n,R). Thus, we get

[H̃k]11 = Id ⊗
(
X1 −X2

)
+ 11

⊺ ⊗X2,

[H̃k]22 = Id ⊗
(
Y1 − Y2

)
+ 11

⊺ ⊗ Y2,

[H̃k]21 = Id ⊗
(
Z1 − Z2

)
+ 11

⊺ ⊗ Z2,
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which coincides with the recovery of Xi, Yi and Zi for i = 1, 2 in Line 8 of Algorithm 3.1.

We can also unravel the structure of block matrices constructing H̃k and obtain that

X1 = Q1 + (d− 1)Q2 + A⊺P1A, Y2 = B⊺P2B,

X2 = −Q2 + A⊺P2A, Z1 = B⊺P1A,

Y1 = R +B⊺P1B, Z2 = B⊺P2A,

(3.13)

with P1 and P2 as in (3.11). Then, by Lemma 3.13, we similarly get:

[H̃k]
−1
22 = Id ⊗ (F −G) + 11

⊺ ⊗G,

where (by Lemma 3.13 Item 3) F and G must satisfy

F−1 = Y1 − (d− 1)Y2
(
Y1 + (d− 2)Y2

)−1
Y2,

G =
(
Y1 + (d− 1)Y2

)−1

Y2

(
Y1 − Y2

)−1

,

which coincides with the definitions in Line 9 of Algorithm 3.1. Finally, by definition of Kk+1

and Lk+1 in Line 9 and Lemma 3.13 Item 4, one can verify that K̃k+1 = −[H̃k]
−1
22 [H̃k]21, which

coincides with the policy iteration in the Hewer’s algorithm [Hewer, 1971] for the system in

Gd,learn (see also Section 3.4.1). Note that by assumption the pair (A,B) is controllable, so is

the system (Ã, B̃) in Gd,learn. Therefore, these updates are guaranteed to remain stabilizing

and converge to the claimed optimal LQR policy K̃∗ provided that we have access to the

true parameters H̃k.

Next, consider LQR cost fI(K̃) as in (3.10) but for the problem parameters (Ã, B̃, Q̃, R̃).

For completing the proof of convergence, it is left to argue that there exists a large enough

integer C such that, at each iteration k of the learning phase, the recursive least square in

Algorithm 3.2 provides a more accurate estimation, denoted by θ◦
k, of the true parameters

θk = vech(H̃k), and the LQR cost fI(K̃) = Tr(P̃K̃) decreases. This claim essentially follows

by [Bradtke et al., 1994, Theorem 1] which we try to summarize for completeness. For that,

at iteration k, let us denote the policy obtained using the estimated parameters by K̃◦
k which

in turn estimates the true policy K̃k. We then define a “Lyapunov” function candidate

sk := fI(K̃
◦
k−1) +

∥∥θk−2 − θ◦
k−2

∥∥.
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Following the same induction reasoning as that of [Bradtke et al., 1994, Theorem 1] and

under persistently exciting input, there exists an integer C such that

sk+1 = sk − ε1(C)
∥∥θk−1 − θ◦

k−1

∥∥− ε2(C)
∥∥K̃k − K̃◦

k−1

∥∥2,

for some positive constants ε1(C) and ε1(C) that are independent of k. But then, sk+1 ≤ sk

and

ε1(C)
∞∑

k=2

∥∥θk−1 − θ◦
k−1

∥∥ ≤ s1; ε2(C)
∞∑

k=2

∥∥K̃k − K̃◦
k−1

∥∥2 ≤ s1.

Also, s1 is bounded as K̃1 stabilizes (Ã, B̃). This guarantees that, first, K̃◦
k remains stabi-

lizing as fI(K̃
◦
k−1) ≤ s0 and Q̃ ≻ 0; second, the estimates θ◦

k−1 become more accurate; and

third, K̃◦
k → K̃∗ as K̃k+1 → K̃∗ at k →∞ [Hewer, 1971]. This completes the proof. □

Proof of Theorem 3.10

Consider the LQR cost fI(K̂) as in (3.10) but for the problem parameters (Â, B̂, Q̂, R̂).

In the “unstructured” case (i.e. ignoring the constraint K ∈ UNm,n(G)), we know that the

optimal LQR cost matrix for the entire networked system satisfies [Goodwin et al., 2001],

P̂∗
lqr = Â⊺

K̂lqr
P̂lqrÂK̂lqr

+ K̂⊺
lqrR̂K̂lqr + Q̂, (3.14)

where K̂lqr = arg minK fI(K). Moreover, the cost matrix P̂∗– associated with the structured

policy K̂∗ learned by Algorithm 3.1–satisfies

P̂∗ = A⊺

K̂∗P̂
∗AK̂∗ + K̂∗⊺R̂K̂∗ + Q̂, (3.15)

where AK̂∗ = Â + B̂K̂∗ and K̂∗ ∈ UNm,n(G). Finally, let K̂∗
struc ∈ arg minK∈UN

m,n(G) fI(K)

denote a “structured” stabilizing optimal LQR policy which is associated with the cost

matrix P̂∗
struc. We know such a policy exists since the smooth cost is lower-bounded and

K̂1 = IN ⊗ K1 ∈ UNm,n(G) is a feasible point of this optimization—as K1 is assumed to be
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stabilizing for the single pair (A,B). Therefore,

Tr
[
P̂∗

lqr

]
= fI

(
K̂∗

lqr

)
≤ fI

(
K̂∗

struc

)
≤ fI

(
K̂∗
)

= Tr
[
P̂∗
]
,

where the last inequality above follows by the fact that K̂∗ is a feasible solution to the struc-

tured problem by construction, i.e., K̂∗ ∈ UNm,n(G). Therefore, 0 ≤ gap(K̂∗) ≤ Tr
[
P̂∗ − P̂∗

lqr

]
.

But then, one can obtain from (3.14), (3.15), and some algebraic manipulation,

P̂∗ − P̂∗
lqr = A⊺

K̂∗
lqr

(
P̂∗ − P̂lqr

)
AK̂lqr

+ M′,

where

M′ = A⊺

K̂∗P̂
∗AK̂∗ −A⊺

K̂∗
lqr

P̂∗AK̂∗
lqr

+ K̂∗⊺R̂K̂∗ − K̂⊺
lqrR̂K̂lqr.

Since P̂∗ − P̂∗
lqr ≻ 0 and ÂK̂lqr

is contractible by the hypothesis, from the first part and

Theorem 1 in [Mori et al., 1982] we obtain,

gap(K̂∗) ≤ Tr(M′)

1− σ2
max

(
ÂK̂lqr

) =
Tr(M)

1− σ2
max

(
ÂK̂lqr

) ,

where the last equality follows by the cyclic permutation property of trace and definition of

AK̂∗ . □

3.4.3 Proof of Lemma 3.13

First, we show that the following algebraic identities hold which will be used in the proof of

Lemma 3.13.

Lemma 3.14. Suppose A and B are symmetric matrices such that A, A−B, and A+(n−1)B

are all invertible for some integer n. Then the following relations hold:

1.
(
A+ nB

)(
A+ (n− 1)B

)−1(
A−B

)
= A− nB

(
A+ (n− 1)B

)−1
B.

2.
(
A+ nB

)(
A+ (n− 1)B

)−1(
A−B

)
=
(
A−B

)(
A+ (n− 1)B

)−1(
A+ nB

)
.

3.
(
A+ nB

)(
A−B

)−1
B = B

(
A−B

)−1(
A+ nB

)
.
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Proof: These claims follow by the algebraic manipulations below: First,

(
A+ nB

)(
A+ (n− 1)B

)−1(
A−B

)

=
((
A+ (n− 1)B

)
+B

)(
A+ (n− 1)B

)−1(
A−B

)

=
(

I +B
(
A+ (n− 1)B

)−1
)(
A−B

)

=A−B +B
(
A+ (n− 1)B

)−1
A−B

(
A+ (n− 1)B

)−1
B

=A+B
((
A+ (n− 2)B

)−1
A− I

)
−B

(
A+ (n− 1)B

)−1
B

=A+B
(
A+ (n− 2)B

)−1
(
A−

(
A+ (n− 2)B

))

−B
(
A+ (n− 1)B

)−1
B

=A− (n− 1)B
(
A+ (n− 1)B

)−1
B −B

(
A+ (n− 1)B

)−1
B

=A− nB
(
A+ (n− 1)B

)−1
B.

Second,

(
A+ nB

)(
A+ (n− 1)B

)−1(
A−B

)

=− n
(
A−B

)(
A+ (n− 1)B

)−1(
A−B

)

+ (n+ 1)A
(
A+ (n− 1)B

)−1(
A−B

)

=− n
(
A−B

)(
A+ (n− 1)B

)−1(
A−B

)

+ (n+ 1)
(
I + (n− 1)BA−1

)−1(
A−B

)

=− n
(
A−B

)(
A+ (n− 1)B

)−1(
A−B

)

+ (n+ 1)
(
A−B

)((
I + (n− 1)BA−1

)(
A−B

))−1(
A−B

)

=− n
(
A−B

)(
A+ (n− 1)B

)−1(
A−B

)

+ (n+ 1)
(
A−B

)((
A−B

)(
I + (n− 1)A−1B

))−1(
A−B

)

=− n
(
A−B

)(
A+ (n− 1)B

)−1(
A−B

)

+ (n+ 1)
(
A−B

)(
A+ (n− 1)B

)−1
A

=
(
A−B

)(
A+ (n− 1)B

)−1(
A+ nB

)
.
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Finally,

(
A+ nB

)(
A−B

)−1
B

=
(
A−B + (n+ 1)B

)(
A−B

)−1
B

=
(
I + (n+ 1)B(A−B)−1

)
B = B

(
I + (n+ 1)(A−B)−1B

)

= B
(
A−B

)−1(
A+ nB

)
.

Proof of Lemma 3.13

Part 1) We prove the claim by induction. First, note that both Nr and its principle submatrix

A are invertible. For r = 2, by Schur complement of N2, we get

det(N2) = det(A) det(A−BA−1B)

= det(A) det(I−BA−1) det(I +BA−1) det(A)

= det(A−B) det(A+B).

Now, suppose the claim holds for r = p. Then, for r = p+ 1, similarly by Schur complement

we get

det(Np+1) = det(A) det
(
Np − 11

⊺ ⊗BA−1B
)

= det(A) det(A−B)p−1 det
(
A−BA−1B + (p− 1)(B −BA−1B)

)
,

= det(A) det(A−B)p−1 det
(
A−B + pBA−1(A−B)

)
,

= det(A) det(A−B)p det
(
I + pBA−1

)
,

= det(A−B)p det(A+ pB),

where the second equality follows by applying the induction hypothesis to Np−11⊺⊗BA−1B

and some algebraic manipulation. This completes the proof.

Part 2) From item 1 of the this lemma,

det(Nr − λIr ⊗ I) = det(A− λI−B)r−1 det(A− λI + (r − 1)B),
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implying that the spectrum of Nr coincides with that of A−B and A+ (r − 1)B—modulo

algebraic multiplicities. Hence, Nr ≻ 0 results in A − B ≻ 0 and A + (r − 1)B ≻ 0.

Furthermore, Nr ≻ 0 if and only if its principal submatrices are positive definite. So, by

applying the latter result to principal submatrices, we claim that A + ℓB ≻ 0 for ℓ =

0, · · · , r − 2. Lastly, from item 1 of Lemma 3.14, for ℓ = 1, · · · , r − 1 we have

A− ℓB
(
A+ (ℓ− 1)B

)−1
B =

(
A+ ℓB

)(
A+ (ℓ− 1)B

)−1(
A−B

)
,

which, by the first part of this claim, is invertible as a multiplication of invertible matrices.

3) Since Nr and A are invertible, the Schur complement Nr−1 − Lr−1A
−1L⊺

r−1 is also

invertible where Lr−1 = 1r−1 ⊗ B. We prove the claim by induction on r. For r = 2, by

[Horn and Johnson, 2012, Block matrix inverse forluma (0.8.5.6)],

N−1
2 =


 H−1 −H−1BA−1

−A−1BH−1 A−1 + A−1BH−1BA−1


 ,

where H = A − BA−1B is the Schur complement of A. By [Horn and Johnson, 2012,

Woodbury inversion formula (0.7.4.1)], H−1 = A−1 + A−1BH−1BA−1, establishing the re-

currence of diagonal blocks. Also, N2 is symmetric, so is N−1
2 and thus establishing that

N2 ∈ PL(2× n,R). Now, from item 1 in Lemma 3.14 with n = 1, we get that

A−1BH−1 = A−1B
(
A−B

)−1
A
(
A+B

)−1

= A−1B
(
A+B

)−1
A
(
A−B

)−1

= A−1B
(
I + A−1B

)−1(
A−B

)−1

=
(
I− (I + A−1B)−1

)(
A−B

)−1
= G2,

where we also used
(
A−B

)−1
A
(
A+B

)−1
=
(
A+B

)−1
A
(
A−B

)−1
derived from Lemma 3.14

item 2. Hence,

N−1
2 = I2 ⊗

(
H−1 +H−1BA−1

)
− 121

⊺
2 ⊗

(
H−1BA−1

)
.

Assume that the claim holds for r = p. To extend the result to r = p + 1, again by [Horn

and Johnson, 2012, Block matrix inverse forluma (0.8.5.6)] and [Horn and Johnson, 2012,
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Woodbury inversion formula (0.7.4.1)],

N−1
p+1 =


A L⊺

p

Lp Np




−1

=


 P−1 −P−1L⊺

pN
−1
p

−N−1
p LpP

−1
(
Np − LpA−1Lp

)−1


 ,

where P = A− L⊺
pN

−1
p Lp and Lp = 1p ⊗B. Let N−1

p = Ip ⊗
(
Fp +Gp

)
− 1p1

⊺
p ⊗Gp where,

Fp =
(
A− (p− 1)B

(
A+ (p− 2)B

)−1
B
)−1

,

Gp =
(
A+ (p− 1)B

)−1
B
(
A−B

)−1
,

where the inversions are valid from item 2 of the current Lemma. By simplification we get

P = A− pB
(
Fp − (p− 1)Gp

)
B and from Lemma 3.14 items 1 and 2,

Fp − (p− 1)Gp =
(
A− (p− 1)B

(
A+ (p− 2)B

)−1
B
)−1

− (p− 1)
(
A+ (p− 1)B

)−1
B
(
A−B

)−1

=
(
A+ (p− 1)B

)−1(
A+ (p− 2)B

)(
A−B

)−1

− (p− 1)
(
A+ (p− 1)B

)−1
B
(
A−B

)−1

=
(
A+ (p− 1)B

)−1
,

where the first term in the second equation undergoes the first two items in Lemma 3.14

consecutively. The latter equality results in P = A− pB
(
A + (p− 1)B

)−1
B. Next, consid-

ering the off-diagonal blocks of N−1
p+1, with some simplification, each block of P−1L⊺

pN
−1
p is

equivalent to P−1B
(
Fp − (p − 1)Gp) and using the previous reasoning and Lemma 3.14 it

can be simplified to,

P−1B
(
Fp − (p− 1)Gp) = P−1B

(
A+ (p− 1)B

)−1

=
(
A+ pB

)−1(
A+ (p− 1)B

)(
A−B

)−1
B
(
A+ (p− 1)B

)−1

=
(
A+ pB

)−1
B
(
A−B

)−1
.

Similarly, each block of N−1
p LpP

−1 is also equal to
(
A+ (p− 1)B

)−1
B
(
A−B

)−1
. Therefore,

it only remains to show that the blocks of
(
Np−LpA−1Lp

)−1
are consistent with the desired

pattern in N−1
p+1. Note that Np − LpA−1Lp = I ⊗

(
A − B

)
+ 11

⊺ ⊗
(
B − BA−1B

)
. Hence,
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with some algebraic rigor we can show that each diagonal term of (Np − LpA
−1Lp)

−1 is
(
A+pB

)−1(
A+(p−1)B

)(
A−B

)−1
and each off-diagonal becomes −

(
A+pB

)
B
(
A−B

)−1
.

Hence,

N−1
p+1 = I⊗

(
Fp+1 +Gp+1

)
− 11

⊺Gp+1,

with Fp+1 and Gp+1 defined as,

Fp+1 =
(
A+ pB

)−1(
A+ (p− 1)B

)(
A−B

)−1

Gp+1 =
(
A+ pB

)
B
(
A−B

)−1
.

4)With direct multiplication and using the mixed-product property of Kronecker prod-

ucts,

NrMr =Ir ⊗
(
A−B

)(
C −D

)
+ 1r1

⊺
r ⊗B

(
C −D

)

+ 1r1
⊺
r ⊗

(
A−B

)
D + r1r1

⊺
r ⊗BD

=Ir ⊗
(
A−B

)(
C −D

)

+ 1r1
⊺
r ⊗

(
B
(
C −D

)
+
(
A−B

)
D + rBD

)
.

3.5 Simulation Results

In this section, we examine the performance and convergence of D3SPI. In order to assess

the suboptimality of the synthesized controllers, we report the trace of cost matrices, Tr(P̂k),

associated with the proposed distributed controller learned by D3SPI at iteration k. As the

optimal distributed design is unknown, we compare these results against the optimal cost

for the unconstrained LQR problem, Tr(P̂LQR), obtained via the solution of the Algebraic

Riccati Equation with parameters (Â, B̂, Q̂, R̂). Note that this is an infeasible solution

to the problem in (3.3); nevertheless, it provides a theoretical lowerbound to evaluate the

performance of any feasible solution—including the optimal one.4

4All the simulations were run on a 3.2 GHz Quad-Core Intel Core i5 CPU and in MATLAB. The scripts
are publicly available at https://github.com/shahriarta/D3SPI.

https://github.com/shahriarta/D3SPI
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3.5.1 Convergence–Randomly Selected Parameters

In the first example, we sample continuous-time system parameters of a single agent (A,B)

from a zero-mean normal distribution with unit covariance, such that A ∈ R5×5 and B ∈
R5×3. We then consider a path-graph of 10 agents and demonstrate how Algorithm 3.1 con-

verges for this network using different instances of the system parameters. The continuous-

time system dynamics of a single agent is discretized with a sampling rate of ∆T = 0.1s. We

set Q1 = 0.2, Q2 = In and R = Im in (3.3). We assume a random exploration signal sampled

from a normal distribution et ∼ N (0, σ2), where the variance σ2 is chosen accordingly for

different input channels.

Figure 3.2 shows the performance of the synthesized controller by illustrating the nor-

malized suboptimality error for the entire network with respect to the (infeasible) LQR

controller. This figure depicts the simulation results for 100 random system parameters and

shows the progress of the proposed method at each iteration in Algorithm 3.1. The actual

simulations are plotted in faded color, whereas their statistical characteristics are plotted in

solid black. Note that almost all realizations of the network have converged after 5 iterations

of the learning phase, due to its quadratic convergence rate. Assessing the suboptimality of

the proposed controller compared against the (infeasible) centralized LQR controller, reveals

an average improvement by a factor of 200.

3.5.2 Network of homogeneous plants

In this example, we apply D3SPI to two other simulation scenarios involving homogeneous

networks of agents with unknown and unstructured model uncertainties. In particular, we

use the dynamics of plants with continuous-time system parameters (A,B) (as reported in

Appendix F of [Hung and MacFarlane, 1982]), in conjunction with random d-regular graph

topologies of different sizes. We then examine the efficacy of D3SPI by illustrating the cost

associated with the proposed distributed controller as a function of nodes in the graph. The

rest of the problem parameters are chosen identical to the setup in Section 3.5.1. Uncertainty
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Figure 3.2: Convergence of Algorithm 3.1 for 100 randomly sampled system parameters (A,B).

in the model are introduced in this example as follows. Each agent follows an unknown LTI

dynamics similar to (3.1) with A replaced by A+∆A, where entries of ∆A are sampled from

a normal distribution N (0, 0.05). Assuming that one has access to a stabilizing controller

K1 for the system with nominal parameters A and B, we set the initial stabilizing controller

to be the LQR optimal controller with parameters (A,B,Q1, R).

Figure 3.3 shows the results of the second simulation example, illustrating how the cost

of the proposed controller changes with respect to the number of nodes in a path graph

with different number of nodes. Figure 3.3a compares the cost associated with our design

P̂∞ against the cost of the initial controller P̂1, and the (infeasible) LQR controller P̂LQR.

Figure 3.3b illustrates the evolution of the normalized suboptimality of our proposed algo-

rithm (with respect to the infeasible LQR controller) as a function of number of nodes in

the corresponding graphs. Figure 3.3c and Figure 3.3d show similar results for the random

3-regular graph topologies with even number of nodes.
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Figure 3.3: Suboptimality of the distributed controller learned by Algorithm 3.1 for a network

of N homogeneous plants with path-graphs structures in (a) and (b), and with random 3-

regular graphs structures in (c) and (d).
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As it can be validated from Figure 3.3, the cost associated with our final proposed dis-

tributed controller has significantly improved the optimality of the initial controller. In

particular, the normalized suboptimality errors of our final design are less than 6% and

2.4% for path-graph and random 3-regular graph topologies, respectively. Furthermore, this

normalized error generally decrease as the number of nodes in the corresponding graphs

increase.

3.6 Remarks and Future Directions

In this chapter, we proposed a model-free distributed policy iteration algorithm to find

structured controllers for large-scale networked systems from data. In this direction, we

incorporated ideas from distributed control and data-driven optimal control literature to

address the model-free distributed control problem. We then analyzed the structure of the

distributed policy iteration algorithm and show how the data-driven nature of our algorithm

can address unknown model uncertainty.

One way to extend the results of this work is to consider a heterogeneous setup where

agents have different dynamics and design parameters. Such conditions are not trivial to

handle and add another layer of complexity to the analysis which is the topic of our follow-up

work. Besides, we acknowledge that the performance of our current method depends on the

maximum degree of the underlying graph. Therefore, this methodology is computationally

efficient when the node with highest degree has significantly less interactions than the size of

the graph. Also, the result of this chapter has been mainly adapted from [Alemzadeh et al.,

2021].

Finally, we note that both the solution strategies in the previous two chapters are building

on the assumption of having access to an initially stabilizing controller. When the underlying

system is open-loop unstable, with unknown parameters, assuming direct access to such

controller may seem unreasonable. This is, in fact, the subject of study in the following

chapter where we provide an online stabilization algorithm with theoretical guarantees that

can help to bootstrap any learning algorithm out of instability issues.
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Chapter 4

ON REGULARIZABILITY AND ONLINE CONTROL OF
UNSTABLE LTI SYSTEMS

Recently, data-driven methods for control of dynamic systems have received considerable

attention in system theory and machine learning as they provide a mechanism for feedback

synthesis from the observed time-series data. Learning, say through direct policy updates,

often requires assumptions such as knowing a priori that the initial policy (gain) is stabiliz-

ing (e.g., when the open-loop system is stable) or a persistently exciting (PE) input-output

data is available. In this chapter, we examine online regulation of (possibly unstable) par-

tially unknown linear systems with no prior access to an initial stabilizing controller nor

a PE input-output data; we instead leverage the knowledge of the input matrix for online

regulation. First, we introduce and characterize the notion of “regularizability” for linear

systems that gauges the extent by which a system can be regulated in finite-time in contrast

to its asymptotic behavior (commonly characterized by stabilizability/controllability). Next,

having access only to the input matrix, we propose the DGR synthesis procedure that—as its

name suggests—regulates the underlying state while also generating informative data that

can subsequently be used for data-driven stabilization or system identification. The analy-

sis is also related in spirit, to the spectrum and the “instability number” of the underlying

linear system, a novel geometric property studied in this chapter. We further elucidate our

results by considering special cases for system parameters as well as improving the compu-

tational performance of DGR via a rank-one update. Finally, we demonstrate the utility of

the proposed approach via an example involving online regulation of the X-29 aircraft.
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4.1 Introduction

Feedback control is ubiquitous in modern technology including applications where it provides

means of stabilization in addition to performance. Control of open-loop unstable plants

arising for instance, in industrial and flight control applications, underscores the importance

of stabilization with robustness guarantees. As such, control of unstable systems is an

ongoing research topic, particularly in the context of safety-critical systems. It is well-

known that unstable systems are fundamentally more difficult to control [Stein, 2003]; in

fact, practical closed-loop systems with unstable subsystems are only locally stable [Sree

and Chidambaram, 2006]. Yet, most of the existing synthesis literature has focused on

model-based control where the designer has to discern fundamental limitations stemming

from process instabilities [Skogestad et al., 2002].

Recent interest in model-free stabilization in the meantime, has been motivated by novel

sensing technologies, robust machine learning, and efficient computational methods to reason

about control and estimation of uncertain systems- all from measured (online) data [Hou

et al., 2017; Sedghi et al., 2020]. Safety-critical systems have in fact necessitated non-

asymptotic analysis on data-driven methods [Faradonbeh et al., 2019; Dean et al., 2019b].

In particular, there has been a growing interest in examining finite-time control of unknown

linear dynamical systems from time-series or a single trajectory [Alaeddini et al., 2018; Sarkar

et al., 2019; Berberich et al., 2020a; Oymak and Ozay, 2019; Fattahi et al., 2019; Wagenmaker

and Jamieson, 2020; Tsiamis and Pappas, 2019]. Parallel to asymptotic analysis in traditional

adaptive control and system identification (sysID) [Ljung, 2001; Narendra and Annaswamy,

2012; Åström and Wittenmark, 2013], model-based finite-time control has benefited from a

least-squares approach to identification followed by robust synthesis–see for example [Dean

et al., 2017]. In this direction, probabilistic bounds on the estimation error related to the

required run-time have been examined. While it has been shown that model-based methods

require fewer measurements for certain control problems in general [Tu and Recht, 2019],1

1That is, first finding a model estimate from data and then use that estimate for control design.
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data collection required for sysID can be expensive or impractical due to resource limitations

and safety constraints. Furthermore, some of the aforementioned studies rely on a priori

information about the system, such as estimates of system parameters [Dean et al., 2019b],

an initial stabilizing controller [Kim and Ng, 2005; Bradtke et al., 1994; Fazel et al., 2018],

or assuming an open-loop stable system [Oymak and Ozay, 2019; Sarkar et al., 2019].

It is known that an input-output trajectory of a controllable linear time invariant (LTI)

system can be parameterized by (offline) data trajectories generated from a persistently

exciting (PE) input [Willems et al., 2005]. Building on this fact, there has been recent works

on stabilization of LTI systems directly from the available data (e.g., see [De Persis and

Tesi, 2019; Coulson et al., 2019; Baros et al., 2020; Van Waarde et al., 2020; Yu et al., 2021;

Berberich et al., 2020b]). However, ensuring a PE input-output data may not be practical

for data-driven control or identification of unstable systems even in low dimensions without

recourse to resets [De Persis and Tesi, 2019].2 Hence, existing data-guided methods might not

be directly applicable for safety critical control such as online flight control [Lozano et al.,

2004] or infrastructure recovery [González et al., 2017]. Our work is motivated by such

applications, requiring no reliance on an initial stabilizing controller nor a PE input-output

data for data-guided control. In this direction, we focus on instances where the input matrix

of the LTI system is known. This point of view has been adopted by the desire to ensure

satisfactory performance for online data-guided control based on a single trajectory–even

when the underlying system is unstable–from the onset.

In order to realize the above program in a systematic way, in the first part of the chapter,

we introduce a class of linear systems exhibiting a property called “regularizability;”3 this

notion captures the input “effectiveness” as it relates to finite-time regulation. We then

proceed to characterize regularizability using linear matrix inequalities (LMIs), as well as

clarify how it relates to spectral properties of the underlying LTI system. Additionally, we

2For instance, injecting white noise into an unstable system can result in ill-conditioned data matrices,
that in turn, leads to numerical issues.

3Not to be confused with the notion of “regularity” for singular systems [Ozcaldiran and Lewis, 1990].
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show how this system-theoretic notion can be verified in a more transparent manner for a

subclass of partially known systems.

In the second part of this chapter, by employing the notion of regularizability, we intro-

duce the Data-Guided Regulation (DGR) algorithm, an online iterative synthesis procedure

that utilizes a single trajectory for an otherwise partially unknown (discrete time) LTI sys-

tem. DGR does not use prior assumptions on the linear state dynamics, nor access to an

initial stabilizing controller or an input-output dataset; instead, the algorithm only relies

on the knowledge of the input matrix. The knowledge of the input matrix is motivated

by scenarios where it is known how the control input affects the state dynamics, yet how

the internal states of the system interact is uncertain (for example, consider the problem of

controlling an unknown networked system from a given set of nodes). This assumption also

proves useful for our setup in order to, 1) ensure a satisfactory performance for the system

trajectory from the onset of the regulation process, 2) avoid requiring an initial stabilizing

controller, and 3) avoid requiring a PE input-output trajectory from an unstable systems

(that is often impractical and leads to ill-conditioned data matrices for post-processing).

We postulate that in the case when the input matrix is also unknown, deriving nontrivial

guarantees for closed loop performance of unstable systems from the onset might prove to

be illusive. Finally, as pointed out above having access to the input structure of a system is

pertinent to a number of applications that involve learning [Vrabie et al., 2009; Wagenmaker

and Jamieson, 2020; Nozari et al., 2017; Sharf and Zelazo, 2018]; a similar assumption has

been adopted for learning and control of nonlinear systems [Jagtap et al., 2020], where the

system dynamics is affine in control with known input mapping and unknown state dynamics.

The contribution of the proposed work is as follows: (1) in addition to introducing the

notion of regularizability for LTI systems, we show how it is distinct from related properties

such as stabilizability. We believe that regularizability is of independent interest particularly

as it pertains to online regulation; (2) we derive conditions under which DGR can eliminate

unstable modes of the (unknown) system and regulate its state trajectory.4 DGR essentially

4Here, regulation is ensured by bounding the norm of the system states during the learning process; see
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aims for simultaneous identification and regulation of the hidden unstable modes from a

single trajectory in a feedback form. As such, DGR can avoid some of the conditioning

issues that arise in processing data generated by an unstable system. Using the notion of

regularizability, we then proceed to derive upper bounds on the state trajectories based on

a geometric quantity for LTI systems that we refer to as the “instability number;” (3) we

show that while DGR performs well for a large class of unstable systems, special structures

(e.g., symmetry) further facilitate deriving intuitive bounds on the system trajectory during

the learning process; (4) finally, we show that the discrete nature of time-series data enables

a recursive approach to DGR synthesis. In this direction a recursive DGR is proposed

that circumvents storing the entire data history and avoids demanding operations such as

pseudoinverse computation or multiplying large matrices.5

The rest of the chapter is organized as follows. In §4.2, we provide an overview of

mathematical notions used in the chapter. In §4.3, we introduce the problem setup as well

as a motivating example, followed by introducing the notion of regularizability for an LTI

model. We further study the properties of regularizable systems in §4.4. Additionally, the

DGR algorithm is proposed in §4.5 as the means of online regulation of (possibly) unstable

systems. The subsequent part of §4.5 is devoted to the analysis of the DGR-induced closed

loop system, deriving upper bounds on the state trajectories, and efficient implementation

of DGR. We provide an illustrative example in §4.8.

4.2 Mathematical Preliminaries

We denote the fields of real and complex numbers by R and C, respectively, and real n×m
matrices by Rn×m. The n × 1 vector of all ones is denoted by 1. The unit vector ei is a

Section 4.3 for more details.

5A preliminary version of this work is the manuscript [Talebi et al., 2020]. The contributions of the present
work as compared with [Talebi et al., 2020] include various LMI characterizations of regularizability, its
extension to polytopic uncertain systems, its use in the context of online regulation with a more general
setup involving the control cost, recursive and efficient updates of the online regulation algorithm, as well
as a more detailed discussion on the examples and relevant literature. Furthermore, the proofs and analysis
that are not presented in the conference version have been included in this manuscript.
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column vector with identity at its ith entry and zero elsewhere. The n×n identity matrix is

denoted by In (or simply I). The diag(.) indicates a diagonal matrix constructed by elements

of its argument in the same order starting from upper-left corner.

For a real symmetric matrix L, we say that L ≻ 0 when L is positive-definite (PD) and

L ⪰ 0 for the positive-semidefinite (PSD) case. The algebraic multiplicity of an eigenvalue λ

is denoted by m(λ); λ is called simple if m(λ) = 1. The range and nullspace of a real matrix

M ∈ Rn×m are denoted by R(M) ⊆ Rn and N (M) ⊆ Rm, respectively, the dimension of

R(M) is designated by rank(M), and its transpose by M⊺. The dimension of a vector space

is denoted by dim. The span of a set of vectors over the complex field is denoted by span{.}.

The singular value decomposition of a matrix M ∈ Rn×m is the factorization M = UΣV ⊺,

where the unitary matrices U ∈ Rn×n and V ∈ Rm×m consist of the left and right “singular”

vectors of M , and Σ ∈ Rn×m is the diagonal matrix of singular values in a descending order.

The reduced order matrices Ur, Vr can be obtained by truncating the factored matrices U

and V in the SVD to the first r columns, where r = rank(M). The thin SVD of M is then

the factorization M = UrΣrV
⊺
r , where Σr ∈ Rr×r is now nonsingular. From SVD, one can

also construct the Moore-Penrose generalized inverse —pseudoinverse for short— of M as

M † = V Σ†U⊺, in which Σ† is obtained from Σ by first replacing each nonzero singular value

with its inverse (zero singular values remain intact) followed by a transpose.

A square matrix A ∈ Rn×n is Schur stable if ρ(A) < 1, where ρ(.) denotes the spectral

radius, i.e., maximum modulus of eigenvalues of its matrix argument. The matrix A is

(complex) diagonalizable if there exist a diagonal matrix Λ ∈ Cn×n and a nonsingular matrix

U ∈ Cn×n such that A = UΛU−1. In this case, Λ consists of the eigenvalues of A with

columns of U as the corresponding eigenvectors. The orthogonal projection of a vector v on

a linear subspace S is denoted by ΠS(v).6 When the columns of a matrix U ∈ Rn×k form

an orthonormal basis for the subspace S, then ΠS = UU⊺.

The Euclidean norm of a vector x ∈ Rn is denoted by ∥x∥ = (x⊺x)1/2. For a matrix

6We will be working with finite dimensional vector spaces and as such all subspaces are closed.
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M , its operator norm is denoted by ∥M∥ = sup{∥Mu∥ : ∥u∥ = 1}. By Br2, we refer to the

r-dimensional Euclidean ball of unit radius. An r-dimensional multi-index α is an r-tuple of

the form (α1, α2, · · · , αr) with all non-negative integers αi, where the sum of its elements is

denoted by |α| = ∑r
i=1 αi; α ∈ {0, 1}r signifies that each αi ∈ {0, 1} for i = 1, . . . , r.

Finally, we say that x0 excites k modes of a matrix A if x0 is contained in the (complex-

)span of k eigenvectors of A, but not in the span of any k− 1 eigenvectors; we refer to those

k eigenvectors (for which x0 is in the span of) as the corresponding excited modes.

4.3 Problem Setup

In this section, we introduce the problem setup and highlight its unique features through an

example. Consider a discrete-time LTI model of the form,

xt+1 = Axt +But, x0 given, (4.1)

where A ∈ Rn×n and B ∈ Rn×m are the system parameters and xt ∈ Rn and ut ∈ Rm denote

the state and control inputs at time index t, respectively. We assume that the system matrix

A is unknown and (possibly) unstable, and that the input matrix B is known. The problem

of interest is to design ut from online state measurements (and not the system matrix A nor

the offline data) such that: I) the system is regulated, with a norm uniformly bounded during

the learning process, e.g., xt evolves in a (safe) region with a quantifiable bounded norm, and

the corresponding data matrix does not become ill-conditioned, and II) the system generates

informative data for post-processing, for example in the context of data-driven stabilization

or system identification.7

Considering regulation by having access to the input matrix is of interest in applications

where it is known a priori how various control inputs effect the dynamic states, e.g., how the

elevator deflection effects the aircraft pitch dynamics, or influencing a diffusive network from

certain boundary nodes. Intuitively, this assumption allows an online regulation mechanism

7We interchangeably use the terms linear independence and informativity of data to emphasize that the
collected data has useful information content for decision-making; the orthogonal “hidden” signal zt in
Lemma 4.14 further exemplifies this perspective.
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to have a chance of stabilizing an unknown (and possibly) unstable system in real-time from

the onset of the learning process.

The following example motivates our setup and underscores why the data-guided per-

spective requires introducing new system theoretic notions.

Example 4.1. For any positive integer n, define the system matrix A ∈ Rn×n and the input

matrix B ∈ Rn as,

A =




λ1 1 0 . . . 0

0 λ2 1
...

0 0 λ3
. . . 0

...
. . . . . . 1

0 . . . 0 λn




, B =




0

...

0

1




.

Note that for any choice of λi ∈ R, the pair (A,B) is controllable (and therefore stabilizable).

Furthermore, since the set {λi} coincides with the spectrum of A, if any subset of {λi} are

equal, then A contains the corresponding Jordan block. Moreover, when λi ̸= λj (i ̸= j),

then A is diagonalizable. Let x0 = e1 and observe that under (4.1), we have e⊺
1xt = λt1 for

all 0 ≤ t < n regardless of the input ut. This implies that, for “any” choice of input, for

the first n iterations, the first state of the system grows exponentially fast with the rate λ1

whenever |λ1| > 1.

Remark 4.2. Example 4.1 constructs a family of controllable systems where no controller

can regulate their respective first states–at least for the first n iterations. That is, a system

state will grow exponentially fast regardless of the choice of ut, even when all eigenvalues

of A except λ1 are stable (e.g., |λi| < 1 for i = 2, · · · , n). Note that in this example, the

(right) eigenvector associated with the unstable mode of A (i.e., the eigen-pair (λ1, e1)) is

orthogonal to R(B) = R(en). This is despite the fact that the Popov-Belevitch-Hautus

(PBH) controllability test holds (i.e., for any left eigenvector v of A we have v⊺B ̸= 0). This

example highlights that controllability of a pair (A,B) does not capture “regularizability”
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of an unstable linear system, specially when closed loop regulation has to be achieved in a

data-guided manner and from the onset of the learning process. Finally, we point out that

in the particular case when λi = 0 for i = 2, . . . , n, the controllability matrix corresponding

to (A,B) is anti-diagonal with all anti-diagonal elements equal to identity. Therefore, it has

singular values/eigenvalues all equal to ±1. This implies that the controllability matrix has

condition number equal to identity; as such modes that are difficult to regularize are not

distinguished by the controllability matrix.

In order to formalize the behavior of the class of systems mentioned above, we intro-

duce a system theoretic notion that captures the effectiveness of the input as pertinent to

online regulation. In order to motivate this notion, note that the dynamics in (4.1) can be

represented as,

xt+1 = ΠR(B)⊥Axt + ΠR(B)Axt +But

= ΠR(B)⊥Axt +B(B†Axt + ut).

Setting ut = −B†Axt + ūt, (4.1) can be rewritten as xt+1 = Ãxt +Būt where,

Ã := ΠR(B)⊥A, (4.2)

and ūt is yet to be designed. Note that the signals Ãxt and Būt are now orthogonal.

This implies that the control signal would not directly affect the part of dynamics that is

generated by ΠR(B)⊥A. As such, in order to have even the possibility of achieving “some”

online performance for this system in finite-time, we require that this part of the dynamics

be stable. This observation thereby motivates the following definition.

Definition 4.3. The pair (A,B) is called regularizable if Ã := ΠR(B)⊥A is Schur stable.

As we will show subsequently, regularizability of a pair (A,B) is related to the stabi-

lizability of (A,B) as well as detectability of (A,B⊺); a combination that is not typically

encountered in LTI analysis. This connection is intuitive, as regulation of a system in finite-

time requires the states to be accessible (for control and observation) through the input
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matrix B. Regularizability also facilitates a new perspective on LTI systems, providing a

basis for the analysis of online algorithms such as the one proposed in Section 4.5.

4.4 Regularizable Systems

In order to get a better sense of the notion of regularizability, we study the spectral properties

of Ã in (4.2) and its relation with system matrices A and B. First, the following example

highlights why regularizability of a system is distinct from its controllability.

Example 4.4. Consider the linear system with A defined as in Example 4.1 such that

|λ1| > 1 and |λi| < 1 for i = 2, . . . , n. Note that the pair (A, en) is controllable (and thus

stabilizable); however this pair is not regularizable. On the other hand, the pair (A, e1) is

regularizable but not controllable.

Recall that a pair (A,B) is stabilizable if and only if (A⊺, B⊺) is detectable. The de-

tectability of (A,B⊺) is seldom of interest in linear system theory [Hespanha, 2018]; however,

we show that it is indeed, a necessary condition for (A,B) to be regularizable. To this end,

we first connect regularizability to the spectral properties of the pair (A,B).

Lemma 4.5. Let Ã = ΠR(B)⊥A. Then for each right eigenpair (λ,v) of A the following

holds:

• (λ,v) is a right eigenpair of Ã whenever v ∈ R(B)⊥ or λ = 0.

• (0,v) is a right eigenpair of Ã whenever v ∈ R(B).

The proof of Lemma 4.5 directly follows from the definitions and therefore is omitted.

Note that the above lemma does not address the scenario where (λ,v) is an eigenpair of A,

with λ ̸= 0, and v = v1 + v2, with nontrivial v1 ∈ R(B) and v2 ∈ R(B)⊥. The following

example illustrates that Ã, as a product of matrix A with an orthogonal projection operator,

has a spectral radius distinct from A.
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Example 4.6. Consider the system in Example 4.1, where the identity off-diagonal elements

of A are replaced with 10, λ1 = 0.9 and λi = 0 for all i = 2, . . . , n, and B = 1. It is

straightforward to show that for all n ≥ 2, A is Schur stable with spectral radius of 0.9 while

Ã is not, i.e., (A,B) is not regularizable. In this case, in spite of A being Schur stable, its

operator norm is about 10. Furthermore, the spectral radius of Ã would be 4.55 for n = 2

and increases to about 10 as n increases. This results in a pathological behavior despite the

fact that the system is originally stable, e.g., any infinite horizon closed-loop LQR controller

for this system would demonstrate undesirable behavior —similar to Example 4.1— when

initialized from x0 = 1.8 Finally, it is worth noting that the controllability matrix of this

pair is ill-conditioned in contrast to Example 4.1.

The preceding discussion exemplifies that even for a stable system, it is nontrival to

assert that state trajectories over a finite time horizon are “well-regulated.” It is no surprise

then that, in spite of its severe limitations from a system theoretic perspective, most of

the recent works on data-guided control focus on contractible systems as they streamline

composition rules and analysis for consecutive iterations in a learning algorithm [Lale et al.,

2020b; Agarwal et al., 2019]. However, the succeeding remark shows why regularizability,

as introduced in this chapter, is less restrictive, and thus—by replacing contractility—can

mitigate those system theoretic limitations.

Remark 4.7. A pair (A,B) is said to be contractible if there exists a controller K such that

∥A−BK∥ < 1. Noting that

A−BK = Ã+ ΠR(B)(A−BK),

8One practical remedy to this problem is to split the dynamics into multiple time-scales using, say, a
sampling heuristics [Manohar et al., 2019] However, time-scale separation often requires physical insights,
non-trivial to identify in general [Naidu and Calise, 2001], let alone for a system with unknown dynamics.
We address time-scale identification from finite-time collected data as a potential future direction of our
work.
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for any vector x ∈ Rn, (by orthogonality) it follows that,

∥Ãx∥2 = ∥(A−BK)x∥2 − ∥ ΠR(B)(A−BK)x∥2

≤ ∥(A−BK)∥2 ∥x∥2.

This, in turn, implies that a contractible system is regularizable (as in that case ∥Ã∥ < 1).

In particular, if the original system matrix A is non-expansive (at least on the subspace

A−1{R(B)⊥}), then (A,B) is regularizable.

The following results further clarifies the relation between regularizable systems and their

system theoretic twins.

Proposition 4.8. If (A,B) is regularizable, then

• (A,B) is stabilizable, and

• (A,B⊺) is detectable.

Proof. For the first claim, note that Ã = A− ΠR(B)A = A+BK, where K := −B†A. Thus

if (A,B) is regularizable then K is a stabilizing closed loop controller. For the second claim,

we establish a contrapositive. Suppose that (A,B⊺) is not detectable. Hence there exists

a right eigenpair (λ,v) of A, where |λ| ≥ 1 and v ∈ N (B⊺) = R(B)⊥. Then, Lemma 4.5

implies that (λ,v) must be a right eigenpair of Ã. Since |λ| ≥ 1, Ã is not Schur stable and

therefore (A,B) is not regularizable.

Note that the consequents of Proposition 4.8 are equivalent whenever A is symmetric,

as detectability of (A,B⊺) is equivalent to stabilizability of (A⊺, B). Also, note that Propo-

sition 4.8 provides a necessary condition for regularizability, whereas the following counter-

example underscores why the stabilizability of (A,B) even when combined with detectability

of (A,B⊺), is not sufficient.

Example 4.9. Let the system matrices A,B be defined as in Example 4.1 and consider the

pair (A1, B1) := (A+A⊺, B). By the structure of A1, note that (A1, B1) is controllable. Since
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A1 is symmetric, (A1, B
⊺
1) is also observable. By direct computation we observe that,

Ã = ΠR(B)⊥A =




2λ1 1 0 . . . 0

1 2λ2 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 2λn−1 1

0 . . . 0 0 0




.

Now if any of λi for i = 1, . . . , n − 1 is say, larger than 1/2, then Ã would be unstable,

implying that (A1, B1) is not regularizable.

In order to complete our understanding of regularizability, we provide several character-

izations using Linear Matrix Inequalities (LMI).

Proposition 4.10. Consider a pair (A,B), and denote Π⊥ := ΠR(B)⊥. Then the following

are equivalent:

1. The pair (A,B) is regularizable.

2. ∃P ≻ 0 such that ρ(A⊺ Π⊥P Π⊥AP
−1) < 1.

3. ∃P ≻ 0 such that ∥P 1/2 Π⊥AP
−1/2∥ < 1.

4. ∃P ≻ 0 such that A⊺ Π⊥P Π⊥A− P ≺ 0.

5. ∃W ≻ 0 such that


 W Π⊥AW

WA⊺ Π⊥ W


 ≻ 0.

6. ∃P ≻ 0 and G ∈ Rn×n such that,


 P A⊺ Π⊥G

⊺

G Π⊥A G+G⊺ − P


 ≻ 0.
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7. ∃P ≻ 0, and G,H ∈ Rn×n such that,


 GA+ A⊺G⊺ − P A⊺H⊺ −G

HA−G⊺ Π⊥P Π⊥ −H −H⊺


 ≺ 0.

Proof. Noting that regularizability of (A,B) is equivalent to Schur stability of Π⊥A, the

first four equivalences are direct consequences of Theorem 7.7.7 in [Horn and Johnson, 2012].

By Schur complement and constructing a congruence induced by diag(I, P−1), (iv) becomes

equivalent to (v). The last two equivalences are due to Theorem 1 in [De Oliveira et al.,

1999a] and Theorem 1 in [De Oliveira et al., 1999b], respectively.

We conclude this section by providing a sufficient condition for guaranteeing when a

polytopic uncertain LTI system is regularizable.

Proposition 4.11. Consider Ai ∈ Rn×n for i = 1, . . . , N and suppose there exist matrices

Pi ≻ 0 and G,H ∈ Rn×n satisfying,


 GAi + A⊺

iG
⊺ − Pi A⊺

iH
⊺ −G

HAi −G⊺ ΠSPi ΠS −H −H⊺


 ≺ 0,

for some linear subspace S ⊆ Rn. Then a pair (A,B) is regularizable whenever A ∈
convhull{Ai}N1 and


 Pi Pi ΠR(B)⊥

ΠR(B)⊥Pi ΠSPi ΠS


 ⪰ 0, ∀i = 1, . . . , N.

Proof. Since A ∈ convhull{Ai}N1 , there exists scalars αi ∈ [0, 1] with
∑N

1 αi = 1 such that

A =
∑N

1 αiAi. By defining P =
∑N

1 αiPi and taking the convex combinations of the negative

definite matrices in the hypothesis with weights αi we obtain,


 GA+ A⊺G⊺ − P A⊺H⊺ −G

HA−G⊺ ΠSP ΠS −H −H⊺


 ≺ 0. (4.3)
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Now by taking the Schur complement of the LMI in the hypothesis involving the input matrix

B it follows that,

ΠSPi ΠS ⪰ ΠR(B)⊥Pi ΠR(B)⊥ , ∀i = 1, . . . , N.

Convex combinations of these LMIs with the same coefficients lead to, ΠSP ΠS ⪰ ΠR(B)⊥P ΠR(B)⊥ .

This, together with the LMI in (4.3) imply the LMI in Proposition 4.10.(vii). As P ≻ 0, we

conclude that the pair (A,B) is regularizable.

Remark 4.12. Note that the proof above also shows that the last LMI in the statement of

Proposition 4.11 is equivalent to

ΠSPi ΠS ⪰ ΠR(B)⊥Pi ΠR(B)⊥ , ∀i = 1, . . . , N ; (4.4)

which is certainly satisfied when S = R(B)⊥. Thus, a direct consequence of Proposition 4.11–

together with the characterization in Proposition 4.10.(vii)–is as follows: if there exists an

input matrix B such that (Ai, B) is regularizable for each i = 1, . . . , N , then we can conclude

that (A,B) is regularizable for any (unknown) matrix A ∈ convhull{Ai}N1 . This observation

does not follow directly from the definition as spectral radius is not subadditive. Moreover,

Proposition 4.11 provides the flexibility of working with the linear subspace S independently

of R(B), which proves to be useful for design purposes, e.g., devising an input matrix in

order to make a polytopic uncertain system regularizable.

Finally, Proposition 4.11–in view of (4.4)–implies that regularizability is a monotonic

system theoretic property with respect to the input, in the sense that enlarging R(B) would

not destroy its regularizability. In fact, enlarging R(B) for a system would make it “more”

regularizable (as Ã will have smaller spectral radius).

4.5 Algorithm: Data-Guided Regulation (DGR)

The primary focus of this section is devising an online, data-driven feedback controller to

regulate the system’s state trajectories, quantified in terms of a signal norm. In this direction,

we propose an iterative procedure for updating the feedback gain (policy); the form of the
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controller can be motivated by considering, at each iteration t, the following optimization

problem with a “one-step quadratic cost”,9

min
ut

∥xt+1∥2 + α∥ut∥2

s.t. xt+1 = Axt +But,

(4.5)

where xt is measured over time but the system matrix A is unknown, and α ≥ 0 is a

regularization factor for the controller design.10 In the case of known A, it is straightforward

to characterize the set of minimizers of the above optimization problem through the first

order optimality condition,

(αIm +B⊺B)ut +B⊺Axt = 0;

as such, the corresponding input belongs to a linear subspace in Rm parameterized by the

system matrices and data. The following proposition illustrates why regularizability as

presented in §4.4 is pertinent to online regulation of LTI systems.

Proposition 4.13. For every α ∈ [0, ε), with some small enough ε > 0, the minimum norm

solution of the iterative optimization (4.5) stabilizes the system (4.1) if and only if the pair

(A,B) is regularizable.

Proof. Given a fixed α ≥ 0, the minimum norm solution to (4.5) at iteration t is u∗
t =

−GαAxt, where Gα := (αI + B⊺B)†B⊺. Therefore, this iterative solution stabilizes the

system in (4.1) if and only if A−BGαA is Schur stable. Using properties of the pseudoinverse,

A−BG0A = (I−BB†(BB†)⊺)A = (I−BB†)A = Ã, where Ã is as defined in Definition 4.3.

The proof now follows by continuity of the spectral radius with respect to α.

9The setup resembles dead-beat control design, with the caveat that the synthesis is data-guided.

10We note that considering a more elaborate form of cost (e.g., finite/infinite horizon LQR cost) for this
optimization problem is certainly relevant. However, in this specific problem setup, i.e., no prior knowledge
on the matrix A and absence of any prior input-state data, we have observed no significant numerical
advantage in considering a more elaborate cost–particularly for upper bounding the state trajectories from
the onset of the learning process.
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Note that Gα → 0 as α → ∞, implying that ut → 0 for all t. As such, in general, the

solution to (4.5) is stabilizing when α is small enough.

The formulation of the optimization problem (4.5) requires the knowledge of system

parameters; nonetheless, it forms the basis for the proposed algorithm when A is unknown

and potentially unstable. The corresponding synthesis procedure is detailed in Algorithm 4.1.

Specifically, for any α ≥ 0, at iteration t, DGR sets

u∗
t = −K∗

t xt, K∗
t := GαYtX †

t−1, (4.6)

where Gα := (αI +B⊺B)†B⊺ and Xt−1,Yt ∈ Rn×t are the measured data matrices,

Xt−1 :=
(
x0 . . . xt−1

)
,

Yt :=
(
x1 −Bu0 . . . xt −But−1

)
.

Intuitively, collecting more data results in capturing the essential (e.g., unstable) modes in

Algorithm 4.1: Data-Guided Regulation (DGR)

1: Initialization (at t = 0)

2: Measure x0; set K0 = 0, Gα = (αI +B⊺B)†B⊺

3: Set X0 =
(

x0

)
and Y0 =

( )

4: While stopping criterion not met11

5: Compute ut = −Ktxt

6: Run system (4.1) and measure xt+1

7: Update Yt+1 =
(
Yt xt+1 −But

)

8: Kt+1 = GαYt+1X †
t

9: Xt+1 =
(
Xt xt+1

)

10: t = t+ 1

the dynamics. As such, it is important to note that DGR is particularly relevant for online

11The stopping criterion can be application specific. For instance, for sysID generating n linearly inde-
pendent data is sufficient, while mere stabilization may require less; see [Van Waarde et al., 2020].
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regulation of unstable systems, when the controller does not have access to enough state

data for the purpose of identification or stabilization. The proposed technique is close in

spirit to modal analysis where regression-based methods are leveraged to extract and control

the dominant modes of the system [Simon and Mitter, 1968; Proctor et al., 2016]. The

emphasis of DGR, however, is on the significance of each temporal action for safety-critical

applications; in these scenarios, it might be rather unrealistic to generate sufficient data from

the inherent unstable modes.

From an implementation perspective, the DGR algorithm can become computationally

expensive for large-scale systems. This is primary due to steps 7-9 of Algorithm 4.1, where

the entire temporal data is stored in Xt+1 and Yt+1; the pseudoinverse operation in the

meantime has complexity O(n2t) required at iteration t. While for the purpose of analysis,

we present the basic form of DGR (as in Algorithm 4.1), in Section 4.7.1 we will propose Fast

Data-Guided Regulation (F-DGR) to circumvent the complexity of storing and computing

on large datasets using a rank-one update on the data matrices, resulting in a recursive

evaluation of Yt+1X †
t (see Algorithm 4.2).

4.6 Analysis of DGR

In this section, we provide the performance analysis for DGR in the general setting; as pointed

out previously, DGR is particularly relevant when t ≤ n, where n denotes the dimension of

the underlying system. We examine the effects of DGR on the system’s state trajectory and

deduce effective guarantees in terms of norm upper-bound and informativity of generated

data. In addition, we will see how a particular structure of the system matrix A, such as

R(A) ⊂ R(B) or its diagonalizability, facilitates further insights into the operation of DGR

as presented in the next subsection.

First, we show why regularizability is essential for the analysis of the trajectory generated

under Algorithm 4.1; in hindsight, justifying its introduction in the first place.
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Lemma 4.14. For all t > 0, the trajectory generated by Algorithm 4.1 satisfies,

xt+1 = ΠR(B)⊥Axt + ΠR(B) Azt + ∆αwt,

where ∆α := B(B†−Gα)A, z0 := x0, w0 = 0, and zt := ΠR(Xt−1)⊥xt and wt := ΠR(Xt−1)xt

for t > 0. Furthermore, {z0, z1, · · · , zt} is a set of “orthogonal” vectors (possibly including

the zero vector), and ∆0 = 0.

Proof. Let B = UrΣrV
⊺
r be the “thin” SVD of B, where r = rank(B). Since BB† = UrU

⊺
r =

ΠR(Ur),

xt+1 = Axt +But

=
[
A−BGαYtX †

t−1

]
xt

=
[
A− BGα A ΠR(Xt−1)

]
xt

= ΠR(Ur)⊥Axt +BB†A(zt + wt)−BGα A wt

= ΠR(Ur)⊥Axt + ΠR(Ur) Azt +B(B† −Gα)Awt.

Thus, the first claim follows as R(Ur) = R(B). For the second claim, note that the definition

of zt implies that zt ⊥ R(Xt−1) for all t > 0, and zk ∈ R(Xt−1) for all k = 1, . . . , t − 1 and

all t > 0. Hence {z0, z1, · · · , zt} consists of orthogonal vectors. Finally, ∆0 = 0 follows by

the definition of Gα and properties of pseudoinverse.

The preceding lemma implies that in the case of α = 0, the time series generated by

Algorithm 4.1 can be considered as the trajectory of a linear system with parameters (Ã, B̃)

and “input” zt where,

Ã := ΠR(B)⊥A, B̃ := ΠR(B)A, (4.7)

and zt = K̃txt, with the time-varying, state-dependent feedback gain K̃t = ΠR(Xt−1)⊥ .

Note that, in this case, if ΠR(B) and A commute,12 then ÃB̃ = 0 and xt+1 = Ãt+1x0 + B̃zt.

12This is the case if (and only if) both matrices are simultaneously diagonalizable (Theorem 1.3.21 in
[Horn and Johnson, 2012]). If A is symmetric, then these matrices commute if (and only if) they are
congruent (Theorem 4.5.15 in [Horn and Johnson, 2012]).
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Moreover, Ã = 0 whenever R(A) ⊂ R(B), i.e., the system dynamics will only be driven by

the feedback signal zt; these cases will be examined further subsequently. In case of general

α, the system trajectories evolve as,

xt+1 = Ãt+1x0 +
t∑

r=0

Ãt−r
[
B̃zr + ∆αwr

]
. (4.8)

Finally, an attractive feature of DGR hinges upon the orthogonality of the “hidden” states

zt generated during the process.

Bounding the State Trajectories Generated by DGR

In the open loop setting, the generated data from an unstable system can grow exponentially

fast with a rate dictated by the largest unstable mode. We show that DGR can prevent this

undesirable phenomenon for unstable systems when the system is regularizable. The key

property for such an analysis involves the notion of instability number.

Definition 4.15. Given the matrix A ∈ Rn×n, for any positive integer t ≤ n, its instability

number of order t is defined as,

Mt(A) := sup
{v1,...,vt}∈On

t

∥Av1∥ ∥Av2∥ · · · ∥Avt∥,

where Ont is the collection of all sets of t “orthonormal” vectors in Rn; for t > n we define

Mt(A) = 0.

Note that Mt(A) ≤ ∥A∥t for all t, where ∥.∥ denotes the induced operator norm. However

the behavior of Mt(A) is fundamentally distinct from ∥A∥t. In fact, the instability number

of a matrix is distinct from products of any subset of its eigenvalues. Consider for example,

a t-dimensional hypercube with its image under A as a parallelotope (see Figure 4.1 for a 3D

schematic). The instability number is related to the multiplication of the lengths of edges

radiating from one vertex of the parallelotope, while det(A⊺A) is related to its volume. The

instability number of a matrix can in fact be difficult to compute. In what follows, we first

provide upper and lower bounds on Mt(A) characterizing its growth rate with respect to the
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Figure 4.1: A unit cube in the domain of A that is mapped to a parallelepiped in its range

space.

largest singular value of A. Subsequently, these bounds will be used to provide a bound on

the norm of the state trajectory generated by DGR.

Lemma 4.16. Let σ1, · · · , σn denote the singular values of A ∈ Rn×n in a descending order.

Then for t ≤ n,

[
σ2
1

t

]t
≤M2

t (A) ≤
[
σ2
1

t

]t
+

t−1∑

j=1

[
σ2
1

t− j

]t−j (
t

j

)
δj + δt,

where δ :=
∑t

i=2 σ
2
i , with Mt(A) as defined in Definition 4.15.

Proof. Let A = WΣU⊺ be the Singular Value Decomposition (SVD) of A where Σ is

diagonal containing the singular values in descending order and both W,U ∈ Rn×n are

unitary. This implies that,

Mt(A) = sup
{vi}t1∈On

t

∥ΣU⊺v1∥ ∥ΣU⊺v2∥ · · · ∥ΣU⊺vt∥

= sup
{vi}t1∈On

t

∥Σv1∥ ∥Σv2∥ · · · ∥Σvt∥,

where the last equality is due to the fact that {U⊺vi}t1 ∈ Ont only if {vi}t1 ∈ Ont , since U is

unitary. For the lower-bound, if t ≤ n, we can choose {vi}t1 ∈ Ont such that |⟨e1,vi⟩| = 1/
√
t

for all i = 1, · · · , t. This choice is certainly possible as a result of applying Parseval’s identity

in a t-dimensional subspace with orthonormal basis {vi}t1 containing the unit vector e1, in
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which, e1 is represented with all coordinates equal to 1/
√
t with respect to this basis. We

thus conclude that,

Mt(A) ≥ |σ1⟨e1,v1⟩| · · · |σ1⟨e1,vt⟩| ≥
(
σ1/
√
t
)t
,

where the left inequality follows from the fact that ∥Σv∥ ≥ |σ1⟨e1,v⟩| for any v ∈ Rn. For

the upper-bound, define Σt = diag(σ1, . . . , σt) and since singular values are in descending

order we have,

Mt(A) ≤ sup
{vi}t1∈Ot

t

t∏

i=1

∥Σtvi∥

= sup
{vi}t1∈Ot

t

t∏

i=1

[
σ2
1 |⟨e1,vi⟩|2 +

t∑

j=2

|σj⟨ej,vi⟩|2
] 1

2

≤ sup
{vi}t1∈Ot

t

t∏

i=1

[
σ2
1 |⟨e1,vi⟩|2 + δ

] 1
2
.

Define γi = ⟨e1,vi⟩; then by Bessel’s inequality
∑t

i=1 γ
2
i ≤ 1 whenever {vi}t1 ∈ Ott. Thereby,

by denoting γ := [γ1 . . . γt]
⊺, we can conclude that

Mt(A) ≤ sup
γ∈Bt

2

t∏

i=1

[
σ2
1γ

2
i + δ

] 1
2

= sup
γ∈Bt

2

[ t+1∑

i=1

σ
2(t+1−i)
1 δi−1

∑

|α|=t+1−i
α∈{0,1}t

(γ21)α1 · · · (γ2t )αt

] 1
2
,

where α is a multi-index of dimension t, and the last equality follows by direct computation.

Now it is easy to see that for a fixed multi-index α, if |α| = m > 0 and α ∈ {0, 1}t then

sup
γ∈Bt

2

(γ21)α1 · · · (γ2t )αt ≤ (
1

m
)m,

which follows by the symmetry in optimization variables. Therefore, we can conclude that

Mt(A) ≤
[
δt +

t∑

i=1

[ σ2
1

t+ 1− i
](t+1−i)

δi−1

(
t

t+ 1− i

)] 1
2
,

implying the claimed upperbound.
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Figure 4.2: Illustration of the upper and lower bounds for instability number of a system

with σ1 = 3 and δ = 0.1 as in Lemma 4.16.

The lower and upper bounds in Lemma 4.16 show that, particularly when δ < 1, Mt(A)

initially grows similar to (σ1/
√
t)t for t ≤ σ2

1, in contrast to the exponential growth of

∥A∥t = σt1. This difference becomes more pronounced for t > σ2
1 when (σ1/

√
t)t starts

decreasing. This fact is illustrated via an example in Figure 4.2, where the first five dominant

terms of the upper bound are plotted and the green region shows where the actual value of

M2
t (A) lies. The following result provides an upper bound on the state trajectories for the

most general case through the lens of regularizability.

Theorem 4.17. For any regularizable pair (A,B), the trajectory generated by Algorithm 4.1

satisfies the following bound for all t > 0,

∥xt+1∥ ≤ Lt+1∥x0∥ ,

where Lt satisfies the recursion,

Lt+1 = at +
t∑

r=1

bt,rLr, L1 = ∥Az0∥,

with

bt,r =

√
∥Ãt−rB̃zr∥2 + ∥Ãt−r∆αwr∥2,
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and at = ∥ÃtAz0∥, where zr = zr/∥zr∥ (if zr ̸= 0, otherwise zr = 0), and wr is similarly

defined.

Proof. Knowing that x1 = Ax0, it follows that ∥x1∥ ≤ L1∥x0∥. Furthermore, for t ≥ 1,

(4.8) leads to,

xt+1 = ÃtAx0 +
t∑

r=1

Ãt−r
[
B̃zr + ∆αwr

]
,

since Ã+ B̃ = A and w0 = 0 by definition. This implies that,

∥xt+1∥ ≤∥ÃtAx0∥+
t∑

r=1

∥Ãt−rB̃zr∥∥zr∥+ ∥Ãt−r∆αwr∥∥wr∥,

≤ at∥x0∥+
t∑

r=1

bt,r∥xr∥,

where we have used Cauchy–Schwarz inequality in conjunction with the equality ∥zr∥2 +

∥wr∥2 = ∥xr∥2. Using this recursive bound, the rest of the proof follows by induction.

Remark 4.18. Note that in the analysis above, when the system is regularizable, at eventually

decreases exponentially fast as t increases. Furthermore, the term bt,r in the sum increases

as r approaches a fixed t. Finally, one can show that the obtained upper bound is tight by

considering Example 4.1 with λ1 > 0 and λi = 0 for i > 1.

Note that computing/estimating the upper bound in Theorem 4.17 requires knowledge

on matrix A, making these estimates more practical for structured systems (for example,

see Corollary 4.22 and Remark 4.23). In order to shed light on the intuition behind this

upper bound, we next study simpler cases with α = 0, where there exists small enough κ

for which bt,r ≤ ∥Ãt−rB̃∥ ≤ κ for all r < t. In particular, we can show that if the system is

regularizable and ÃB̃ = 0, then the trajectories of the closed loop system will be bounded

by a combination of instability number of different orders. This is stated in the following

corollary of Theorem 4.17.

Corollary 4.19. For any regularizable pair (A,B) with ÃB̃ = 0, and Mt(A) as in Defini-

tion 4.15, the system trajectory generated by Algorithm 4.1 with α = 0 satisfies the following
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for all t > 0,

∥xt+1∥
∥x0∥

≤ at +
t−1∑

r=1

Mr(A)at−r +Mt+1(A) .

Proof. For brevity, let bt = bt,t, then as ÃB̃ = 0, the recursion in Theorem 4.17 reduces to

Lt+1 = at + btLt with L1 = ∥Az0∥; and its solution has the following form for all t > 0,

Lt+1 = at + bt · · · b2b1L1 +
t−1∑

r=1

bt · · · bt+1−r at−r. (4.9)

As α = 0 and orthogonal projection is non-expansive, we claim that br = ∥B̃zr∥ ≤ ∥Azr∥
which vanishes whenever zr = 0. In the meantime, by Lemma 4.14, {zr}t0 must be a set of

orthogonal vectors for any t > 0, and thus {zr}t0 is a set of orthogonal vectors that are either

normal or zero. Note that if t ≥ n, then {zr}t0 must contain at least one zero vector for

dimensional reasons. Therefore, by Definition 4.15, we conclude that bt · · · bt+1−r ≤Mr(A),

for each r = 1, . . . , t − 1. Similarly, as L1 = ∥Az0∥, we have bt · · · b2b1L1 ≤ Mt+1(A). By

using these inequalities in (4.9), the claim follows by Theorem 4.17.

The above observation further highlights the importance of the instability number in the

context of DGR. Note that the terms in the upper bound involving Mr(A) vanishes if

r > n.

Informativity of the DGR Generated Data

In the sequel, we show that DGR generates linearly independent state-trajectory data; we

refer to this as informativity of data. Then, we proceed to make a connection between this

independence structure and the number of excited modes in the system. Before we proceed,

let us define Ltk(A), that is based on eigenvalues corresponding to k modes of a matrix A,
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as,

Ltk(A) :=




1 λ1 · · · (λ1)
t−1

1 λ2 · · · (λ2)
t−1

...
...

. . .
...

1 λk · · · (λk)
t−1



, 1 ≤ t ≤ n. (4.10)

Remark 4.20. Note that Ltk(A) has a specific structure that hints at its invertibility. In fact,

for t = k, Lkk(A) is the Vandermonde matrix formed by k eigenvalues of A which would be

invertible if and only if λ1, · · · , λk are distinct. More generally, if {λ1, · · · , λk} consists of r

distinct eigenvalues (where r ≤ k), then Lrk(A) has full column rank.

Intuitively, informative data–due to its linear independence structure–contain useful in-

formation for decision-making purposes. In particular, if the choice of x0 results in exciting

all modes of A, one might expect that a useful online regulation algorithm should generate

informative data at the same time that it is regulating the state-trajectory. The next theo-

rem formalizes how DGR realizes this expectation depending on what modes of the system

are excited by the initial condition.

Theorem 4.21. Let x0 excite k1 + k2 modes of A, such that k1 modes are in R(B) and

k2 modes are in R(B)⊥. If the excited modes correspond to distinct eigenvalues, then

{x0, . . . ,xr−1}, generated by Algorithm 4.1 with α = 0, is a set of linearly independent

vectors for any r ≤ max{k1, k2}.

Proof. Without loss of generality, let λ1, . . . , λk1 be the eigenvalues corresponding to the

excited modes u1, . . . , uk1 ∈ R(B), and similarly λk1+1, . . . , λk1+k2 be corresponding to

uk1+1, . . . , uk1+k2 ∈ R(B)⊥. Recall that Xt−1 = [x0 x1 . . . xt−1]; then by definition of

zt in Lemma 4.14, for t ≥ 1 there exists scalar coefficients ζt0, · · · , ζtt−1 ∈ R such that

zt = xt−
∑t−1

j=0 ζ
t
jxj. This together with the dynamics in Lemma 4.14 imply that x1 = Ax0

and for t ≥ 2,

xt = Axt−1 − ΠR(B)

t−2∑

j=0

ζtjAxj. (4.11)
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Since x0 excites k1 + k2 modes of the system, we have x0 =
∑k1+k2

ℓ=1 βℓuℓ, where βℓ are some

nonzero real coefficients and (λℓ,uℓ) are eigenpairs of A. Hence x1 = Ax0 =
∑k1+k2

ℓ=1 βℓλℓuℓ,

and we claim that for t ≥ 2 there exist scalar coefficients ξt1, · · · , ξtt−1 ∈ R such that,

xt =

k1∑

ℓ=1

βℓ

[
(λℓ)

t −
t−1∑

i=1

ξti(λℓ)
i
]
uℓ +

k1+k2∑

ℓ=k1+1

βℓ(λℓ)
tuℓ. (4.12)

The proof of the last claim is by induction. Note that Atx0 =
∑k1+k2

ℓ=1 βℓ(λℓ)
tuℓ, and by

substituting this into (4.11) for t = 2 we have that,

x2 = Ax1 − ζ20ΠR(B)Ax0

= ΠR(B)

[
A2x0 − ζ20Ax0

]
+ ΠR(B)⊥A

2x0

=

k1∑

ℓ=1

βℓ
[
(λℓ)

2 − ζ20λℓ
]
uℓ +

k1+k2∑

ℓ=k1+1

βℓ(λℓ)
2uℓ,

where the last equality is due to the fact that uℓ ∈ R(B) for ℓ ≤ k1 and uℓ ∈ R(B)⊥ for

ℓ > k1. By choosing ξ21 = ζ20 , we have shown that (4.12) holds for t = 2. Now suppose that

(4.12) holds for all 2, . . . , t− 1; it now suffices to show that this relation also holds for t. By

substituting the hypothesis for 2, . . . , t− 1 into (4.11),

xt =

k1∑

ℓ=1

βℓ

[
(λℓ)

t −
t−2∑

i=1

ξt−1
i (λℓ)

i+1
]
uℓ +

k1+k2∑

ℓ=k1+1

βℓ(λℓ)
tuℓ −

k1∑

ℓ=1

βℓ[ζ
t
0λℓ + ζt1(λℓ)

2]uℓ

−
t−2∑

j=2

ζtj

k1∑

ℓ=1

βℓ

[
(λℓ)

j+1 −
j−1∑

i=1

ξji (λℓ)
i+1
]
uℓ.

Therefore, xt =
∑k1

ℓ=1 βℓ [⋆]uℓ +
∑k1+k2

ℓ=k1+1 βℓ(λℓ)
tuℓ, where ⋆ replaces the expression,

(λℓ)
t −

t−2∑

i=1

ξt−1
i (λℓ)

i+1 −
t−2∑

j=0

ζtj(λℓ)
j+1 +

t−2∑

j=2

j−1∑

i=1

ζtjξ
j
i (λℓ)

i+1.

By appropriate choices of ξt1, · · · , ξtt−1 ∈ R, we can rewrite ⋆ = (λℓ)
t −∑t−1

i=1 ξ
t
i(λℓ)

i. This

completes the proof of the claim in (4.12) by induction. Now, let x̂ =
∑r−1

j=0 γjxj for some

γj ∈ C and some r ≤ max{k1, k2}. Then, by substituting xj from (4.12) and exchanging the
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sums over j and ℓ we have,

x̂ =

k1∑

ℓ=1

βℓ

[
γ0 + γ1λℓ +

r−1∑

j=2

γj
[
(λℓ)

j −
j−1∑

i=1

ξji (λℓ)
i
]]
uℓ +

k1+k2∑

ℓ=k1+1

βℓ

r−1∑

j=0

γj(λℓ)
juℓ.

Now, by exchanging the sums over i and j, it follows that,

x̂ =

k1∑

ℓ=1

βℓ

[
γ0 +

r−2∑

i=1

[
γi −

r−1∑

j=i+1

γjξ
j
i

]
(λℓ)

i + γr−1(λℓ)
r−1
]
uℓ +

k1+k2∑

ℓ=k1+1

βℓ
[ r−1∑

j=0

γj(λℓ)
j
]
uℓ.

Since {uℓ}k1+k21 are eigenvectors associated with distinct eigenvalues, they are linearly inde-

pendent. Thus, noting that βℓ ̸= 0 for all ℓ = 1, · · · , k1 + k2, then x̂ = 0 implies that,

γ0 +
r−2∑

i=1

[
γi −

r−1∑

j=i+1

γjξ
j
i

]
(λℓ)

i + γr−1(λℓ)
r−1 = 0,

for all ℓ = 1, . . . , k1; and
∑r−1

j=0 γj(λℓ)
j = 0, for all ℓ = k1 + 1, . . . , k1 + k2. By rewriting the

last two sets of equations in matrix form we get,


 Lrk1(A)(I − Ξ)

L̂rk2(A)


γ = 0, (4.13)

where L̂rk2(A) is the last k2 rows of Lrk1+k2(A) and

Ξ :=




0 0 0 0 . . . 0

0 0 ξ21 ξ31 · · · ξr−1
1

0 0 0 ξ32 · · · ξr−1
2

0 0 0 0
. . .

...
...

...
...

...
. . . ξr−1

r−1

0 0 0 0 · · · 0




, γ :=




γ0

γ1

...

γr−1




. (4.14)

Note that I−Ξ is invertible by construction. Since the excited modes correspond to distinct

eigenvalues, if r ≤ max{k1, k2}, then either Lrk1(A) or L̂rk2(A) has full column rank. Either

way, (4.13) implies that γ = 0 and thus {x0, . . . ,xr−1} is a set of linearly independent

vectors. This observation completes the proof as r ≤ max{k1, k2} was chosen arbitrary.



118

The preceding theorem guarantees the linear independence of the state-trajectory gener-

ated by DGR whenever the exited modes lie inR(B) orR(B)⊥, even though our observations

suggest that it must remain valid for arbitrary excitation of the modes. Nonetheless, DGR

remains effective in terms of online regulation from an arbitrary choice of x0 as guaranteed

in Theorem 4.17, Corollary 4.19, and subsequently in Corollary 4.22.

4.7 The Special Case of R(A) ⊂ R(B) with α = 0

In order to better understand the behavior of DGR, in this subsection, we study the more

special case where R(A) ⊂ R(B). This includes the case where rank(B) = n, i.e., one

can directly control each state of the system (e.g. see [Sharf and Zelazo, 2018; Friedkin

and Johnsen, 1990]). Note that R(A) ⊂ R(B) implies that Ã = 0 which, in turn, results

in regularizability of (A,B). This, together with Corollary 4.19, results in the following

corollary.

Corollary 4.22. For any matrix A ∈ Rn×n and B ∈ Rn×m, where R(A) ⊆ R(B), the

trajectory generated by Algorithm 4.1 with α = 0 satisfies the following for all t > 0,

∥xt+1∥ ≤Mt+1(A)∥x0∥ ,

with Mt(A) as in Definition 4.15.

Proof. Note that Ã = ΠR(B)⊥A = 0 whenever R(A) ⊆ R(B). The claim now follows by

Corollary 4.19 since ÃB̃ = 0 and ak = 0 for all k = 1, . . . , t.

Note that under the hypothesis of Corollary 4.22, in particular xt+1 = 0 for all t ≥ n

whenever DGR is in effect for the noiseless dynamics in (4.1) (see Figure 4.3); however, this

might happen even before t reaches n as will be discussed in Proposition 4.25. Also, the

latter bound becomes more structured for a symmetric A by combining the results from

Corollary 4.22 and Lemma 4.16 which we skip for brevity.
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Figure 4.3: A geometric schematic of DGR when R(A) ⊆ R(B). Since z0 := x0, zt ⊥
R(Xt−1) and zt ∈ R(Xt) for t = 1, 2, the set {z0, z1, z2} consists of orthogonal vectors.

Remark 4.23. In order to further illustrate the bound stated in Corollary 4.22, assume that

δe ≤ 1. Then, from Lemma 4.16,

∥xt∥2
∥x0∥2

≤
[
σ2
1

t

]t
+

⌊t/2⌋∑

j=1

[
σ2
1

t− j

]t−j [
t

j

]j
+

t−1∑

j=⌊t/2⌋+1

[
t σ2

1

(t− j)2
]t−j

+ 1,

where we have also used
(
t
j

)
≤ (e t/j)j. This implies that as t gets larger than σ2

1, the terms

with large powers admit smaller bases and those with large bases will gain smaller powers

comparing to σ2t
1 . This is despite the fact that for small t, the relative norm of the state

might grow.

In the sequel, as a result of linear independence established in Theorem 4.21 we show

how the simplified bounds (derived in Section 4.6) clarify the elimination of the unstable

modes in the system.

Corollary 4.24. Suppose R(A) ⊆ R(B) and let x0 excite k modes of A. If r eigenvalues

corresponding to the k excited modes are distinct for some r ≤ k, then {x0, . . . ,xr−1},
generated by Algorithm 4.1 with α = 0, is a set of linearly independent vectors.

Proof. Given that R(A) ⊆ R(B), all the modes of A are contained in R(B), so without loss
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of generality, let λ1, . . . , λk be the eigenvalues corresponding to the excited modes u1, . . . , uk ∈
R(B). Then, following the proof of Theorem 4.21, (4.12) reduces to,

xt =
k∑

ℓ=1

βℓ

[
(λℓ)

t −
t−1∑

j=1

ξtj(λℓ)
j

]
uℓ.

Now, let x̂ =
∑r−1

j=0 γjxj for some γj ∈ C and r ≤ k. Then following the same argument as

in the proof of Theorem 4.21 about x̂, (4.13) reduces to Lrk(A)(I − Ξ)γ = 0, with similar

definitions of Ξ and γ as in (4.10), and Lrk(A) as in (4.14). Since r eigenvalues corresponding

to k excited modes are distinct, Lrk(A) has full column rank. As I − Ξ is invertible, we

conclude that γ = 0 meaning that {x0, . . . ,xr−1} are linearly independent.

An immediate consequence of the above corollary is that DGR generates data that is

effective for simultaneous identification of modes even with multiplicity greater than one.

Proposition 4.25. Suppose that A is diagonalizable with R(A) ⊆ R(B), and let x0 excite k

modes of A corresponding to r distinct eigenvalues (where possibly r ≤ k). Then, in exactly

r iterations of Algorithm 4.1 with α = 0, span{x0, . . . ,xr−1} coincides with the subspace

containing these excited modes; furthermore, xr+1 = 0.

Proof. Without loss of generality, let x0 excite the k modes of A corresponding to λ1, · · · , λr.
Since A is diagonalizable, let A = UΛU−1 be its eigen-decomposition and so x0 excite

{u1, · · · ,uk}, i.e., x0 =
∑k

i=1 βiui, with βi ̸= 0. Define

I(λi) = {j : uj is the eigenvector corresponding to λi} ,

for i = 1, · · · , r. Furthermore, define the r-dimensional subspace,

S := span




∑

j∈I(λ1)

βjuj, · · · ,
∑

j∈I(λr)

βjuj



 ,

where the span is taken over the complex field. We prove by induction that xt ∈ S for all

t = 1, · · · , r. Notice that x0 ∈ S and suppose that {x0, . . . ,xt−1} ⊂ S; recall from the

proof of Corollary 4.24 that xt = Azt−1, where zt−1 = ΠR(Xt−2)⊥(xt−1). Since xt−1 ∈ S and
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span{x0, . . . ,xt−2} ⊂ S, one can conclude that zt−1 ∈ S, and from the definition of S, xt =

Azt−1 ∈ S. On the other hand, since λ1, λ2, · · · , λr are distinct eigenvalues, by Corollary 4.24,

dim (span{x0, . . . ,xr−1}) = r. By hypothesis of the induction span{x0, . . . ,xr−1} ⊂ S,

and since dim(S) = r, we conclude that span{x0, . . . ,xr−1} must be the entire S, i.e.

span{x0, . . . ,xr−1} = S, proving the first claim. Lastly, zr = ΠR(Xr−1)⊥(xr) = 0 since

xr ∈ S, and thus xr+1 = Azr = 0, thereby completing the proof.

Following Proposition 4.25, if x0 excites k modes of the system corresponding to distinct

eigenvalues with trivial algebraic multiplicities, then Algorithm 4.1 identifies all the excited

modes of the system in k iterations. Furthermore, this implies that xk+1 = 0, i.e., DGR

eliminates the unstable modes and regulates the unknown system in exactly k+ 1 iterations.

This also implies that, if k < n then online regulation of the system is achieved, even before

enough data is available for full identification of system parameters.

4.7.1 Boosting the Performance of DGR

DGR as introduced in Algorithm 4.1 can become computationally burdensome for large-scale

systems. This is mainly due to storing the entire history of data in Xt and Yt followed by the

update of the controller that finds the pseudoinverse as well as multiplication of these data

matrices (steps 7-9). Assuming the SVD-based computation of pseudoinverse, the complexity

of the method is13 O(n2t). In this section, we show that such computational burden can be

circumvented using rank-1 modifications of data matrices as a result of the discrete nature of

data collection in our setup. Note that for computing Kt+1 from (4.6) we only need to access

Yt+1X †
t (rather than X †

t ). To this end, we leverage the results of [Meyer, 1973] in order to

find Yt+1X †
t recursively as a function of YtX †

t−1, Xt−1X †
t−1, and xt.

Proposition 4.26. Let Xt−1 be as in Algorithm 4.1, xt be the state measurement at iteration

13The multiplication Yt+1X †
t enforces another O(n2t) complexity that can be significant for large n.



122

t and zt = ΠR(Xt−1)⊥xt . If xt ̸∈ R(Xt−1) then

X †
t =


 X

†
t−1 − γtz

†
t

z†
t


; (4.15)

otherwise,

X †
t =


 X

†
t−1 − ϵtγtζ⊺

t

ϵtζ
⊺
t


, (4.16)

where ϵt ∈ R, γt ∈ Rt, and ζt ∈ Rn are defined as,

ϵt :=
1

∥γt∥2 + 1
, γt := X †

t−1xt, ζt :=
(
X †
t−1

)⊺
γt. (4.17)

Proof. Rearrange Xt into,

Xt =
(
Xt−1 0

)
+ xte

⊺
t+1.

Then, it is implied from Theorem 1 in [Meyer, 1973] that

X †
t =

(
Xt−1 0

)†
+

[
et+1 −

(
Xt−1 0

)†
xt

]
z†
t ,

whenever xt ̸∈ R(Xt−1). Hence, by leveraging the SVD of Xt−1 and definition of pseudoin-

verse we get

X †
t =


 X

†
t−1

0


+

[
et+1 −


 X

†
t−1

0


xt

]
z†
t =


 X

†
t−1 − γtz

†
t

z†
t


 .

For the case when xt ∈ R(Xt−1), Theorem 3 in [Meyer, 1973] gives,

X †
t =


 X

†
t−1

0


+ et+1γ

⊺
t X †

t−1 −
1

σ
pq⊺,

where, σ = ∥γt∥2 + 1, p = −∥γt∥2et+1 −


 γt

0


, q = −ζt. The rest of the proof follows

from rearranging the terms and using the definitions in (4.17).
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As mentioned earlier, the update of the controller requires YtX †
t−1 that could become pro-

hibitive for large n. However, we can take advantage of Proposition 4.26 to find this term

recursively in order to avoid memory usage as well as computational burden.

Theorem 4.27. Let Xt−1 be as in Algorithm 4.1 and xt be the state measurement collected

at t. For t > 0, define Pt−1 := Xt−1X †
t−1, Qt−1 := YtX †

t−1 and zt := ΠR(Xt−1)⊥xt . Then

zt =
[
I− Pt−1

]
xt,

Qt = Qt−1 + [xt+1 −But −Qt−1xt]z
†
t ,

Pt = Pt−1 + ztz
†
t .

Proof. The expression for zt follows directly by properties of pseudoinverse. Next, observing

that xt+1 − But = Axt and so Qt = APt, the recursive relation for Qt can be derived from

the one for Pt. Finally, Proposition 4.26 implies that, if xt ̸∈ R(Xt−1) then

Pt = XtX †
t =

(
Xt−1 xt

)

 X

†
t−1 − γtz

†
t

z†
t


 = Pt−1 + ztz

†
t ;

otherwise, Pt = Pt−1 because Xt−1γt = Xt−1X †
t−1xt = xt. But in this case, zt = (I −

Pt−1)xt = 0 and therefore, the same recursion holds.

Given the recursions introduced in Theorem 4.27, the refined (fast) version of DGR is dis-

played in Algorithm 4.2. At each iteration t, we update Qt based on the information from

the new data and the projection Pt−1 (hidden in z†
t ), which itself gets updated as a part of

the recursion. The n×n matrix Qt is then employed for the controller’s update. Notice that

zt is the same as in Lemma 4.14, however, here we compute it using Pt−1 which is obtained

recursively.

Next, we discuss the convergence of DGR algorithm in the following. Note that, by

Theorem 4.27, DGR and F-DGR are equivalent, and the following corollary provides a useful

necessary and sufficient conditions for the convergence of Qt.
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Algorithm 4.2: Fast Data-Guided Regulation (F-DGR)

1: Initialization

2: Measure x0, set K0 = 0 and Gα = [αI +B⊺B]†B⊺

3: Set P−1 = Q−1 = 0 and t = 0

4: While stopping criterion not met

5: Compute ut = −Ktxt

6: Run system (4.1) and measure xt+1

7: Set zt = [I− Pt−1]xt

8: Qt = Qt−1 + [xt+1 −But −Qt−1xt]z
†
t

9: Pt = Pt−1 + ztz
†
t

10: Kt+1 = GαQt
11: t = t+ 1

Corollary 4.28. Suppose that A is full-rank. Let Qt be as defined in Algorithm 4.2 and

Xt−1 as in Algorithm 4.1. Then Qt+k = Qt−1 for all k ≥ 0 if and only if xt+k ∈ R(Xt−1) for

all k ≥ 0.

Proof. By Theorem 4.27, we know that

Qt −Qt−1 = A(Pt − Pt−1) = Aztz
†
t .

So, if xt ∈ R(Xt−1) then zt = 0 and thus Qt−Qt−1 = 0; otherwise Qt−Qt−1 = Aztz
⊺
t /z

⊺
t zt,

which does not vanish as A is assumed to be full-rank and zt ̸= 0. The rest of the proof

follows from this observation.

A simple implication of the preceding corollary is that, in the worst case scenario–when

A ∈ Rn×n has no zero eigenvalues and all of its modes are excited– the algorithm converges

as soon as n linearly independent state measurements have been collected from the noise-less

dynamics in (4.1). From this point on, ut’s as computed in DGR and F-DGR coincide with

the solution of (4.5). However, the convergence of the controller in DGR and F-DGR may
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happen earlier in the process whenever the future state measurements lie in the range of

previous ones. For example, under hypothesis of Proposition 4.25, when x0 excites k modes

of A corresponding to r ≤ k < n distinct eigenvalues, then both DGR and F-DGR converge

in r iterations. In this case, the proposed controller may not coincide with the actual solution

of the optimization in (4.5). Nonetheless, the online regulation of the system is guaranteed

in general by Theorem 4.17. Note that, in presence of process noise in the dynamics (4.1),

Corollary 4.28 is not valid and the convergence behavior of DGR (and F-DGR) will be

dictated by the noise stochastics.

Finally, zt reflects the informativity of the newly generated data xt. In fact, based on

its definition, Qt provides an estimate of A up to iteration t. Hence, the update of Qt as

in Algorithm 4.2 essentially adjusts the prior estimate of A based on the new information

encoded in the term Aztz
†
t . All in all, the machinery provided in this section circumvents

the computational load of finding pseudoinverses by leveraging the recursive nature of the

solution methodology.

4.8 Numerical Simulations

In order to showcase the advantages of the proposed method in practical settings, we have

implemented DGR on data collected from the X-29A aircraft. The Grumman X-29A is an

experimental aircraft initially tested for its forward-swept wing; it was designed with a high

degree of longitudinal static instability (due to the location of the aerodynamic center on the

wings) for maneuverability, where linear models were leveraged to determine the closed-loop

stability (Figure 4.4). The primary task of the control laws is to stabilize the longitudinal

motion of the aircraft. To this end, the dynamic elements of the flight control system is

designed for two general modes: 1) the Normal Digital Powered Approach (ND-PA) used in

the takeoff and landing phase of the flight, and 2) the Normal Digital Up-and-Away (ND-UA)

when otherwise.

For both flight modes, we study the case where the dynamics of the aircraft has been

perturbed and unknown. This can be due to a mis-estimation of system parameters and/or
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Figure 4.4: Grumman X-29A (Credits: NASA Photo), mainly known for its extreme insta-

bility while providing high-quality maneuverability; the longitudinal and lateral-directional

states are illustrated.

any unpredicted flaw in the flight dynamics due to malfunction/damage. In this setting, the

control laws designed for the original system fail and the system can become highly unstable.

We then let DGR regulate the system; in this case, since the aircraft continues to operate

safely, one can use any data-driven identification, stabilization, or robust control methods

once enough data has been collected.

The longitudinal and lateral-directional dynamics each contains 4 states (see Figure 4.4).

The nominal system parameters in each operating mode are obtained from Tables 9-10 and

13-14 in [Bosworth, 1992] (with fixed discretization step-size 0.05), whereas perturbation ∆A

is assumed to shift the dynamics to,

xt+1 = (A+ ∆A)xt +But + ωt,

where the elements of ∆A are sampled from a normal distribution N (0, 0.05), and ωt ∼
N (0, 0.01) denotes the process noise. Note that even though the nominal dynamics is known

in this example, the proposed machinery makes no such a priori estimate, and assumes a

completely unknown dynamics Anew := A+∆A. The original controller for the unperturbed

system in each mode is assumed to be a closed-loop infinite horizon LQR with state and input

weights Q = I and R = 10−7.
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We now aim to regulate the unstable system Anew from random initial states (where each

state is sampled from N (0, 10.0)). Note that both the original system and the perturbed

system have effective input characteristics that make them regularizable (with ρ(Ã) = 0.998

and ρ(Ãnew) = 0.927 for ND-PA mode, and ρ(Ã) = 0.998 and ρ(Ãnew) = 0.932 for ND-UA

mode). The resulting state trajectories for ND-PA and ND-UA modes are demonstrated

in Figures 4.5 and 4.6, and Figures 4.7 and 4.8, respectively. Without DGR, the norm of

the state ∥xt∥ would grow rapidly (red curve) as the unknown system is unstable and the

original control laws fail.14 As the plots suggest, with DGR in the feedback loop (with the

choice of α = 5 × 10−7),15 the unstable modes can be suppressed resulting in stabilization

of the system (the norm of the states in this case is demonstrated in black and each state is

depicted in faded color).

Up to iteration t = 36 for longitudinal and t = 30 for lateral directional dynamics (shown

with vertical dashed-line), enough data is generated in order to estimate the new system

dynamics, or apply any other data-driven control using the data, (safely) generated by DGR

up to this point. In what follows, we first showcase the complementary utility of DGR for

identification-and-control; we then illustrate how it can also be incorporated for data-driven

control.

In particular, the data is informative enough to identify system parameters through least

squares denoted by Â. Therefore, one stopping criterion–which is also used here–is the point

where the estimate of system parameters Â has converged. Then, one can replace DGR

with a closed-loop infinite horizon LQR controller with some cost-weights Q and R which is

obtained using the new estimate of the system dynamics. Here we set Q = I and R = 10−7

in order to make it comparable to the one-step quadratic cost used for DGR. In contrast to

the original unstable LQR controller (red curve), it is shown that the new LQR controller for

Â (blue curve) is stabilizing since we now have a more accurate estimate of the (perturbed)

14Since the LQR solution, in general, may have small stability margins for general parameter perturbations
[Zhou et al., 1996].

15The positive choice for α adjusts the compromise between the regulation of states in order to decrease
2-norm of the input. This may lead to larger upper bound specially when the system is unstable.
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system parameters using the data generated safely by DGR in the loop.

Next, while the DGR is still in effect, the generated data matrix is not ill-conditioned and

thus can be utilized to implement a data-driven control algorithm from that point onward.

Due to the presence of noise and uncertainty, we have implemented the regularized version

of Data-driven Model Predictive Control (MPC) as in [Coulson et al., 2019; Berberich et al.,

2020b] with parameters Tini = 1, N = 4, Q = 400I, R = 0.05I, λσ = 104 and λg = 1 for both

dynamics, where the input is persistently exciting. With DGR, after enough data has been

generated for each dynamics, the data-driven MPC algorithm is initiated; the norm of the

corresponding state vector is depicted in yellow dash-dotted line labeled as “DGR+DeePC.”

On the other hand, one could consider implementing the data-driven MPC without DGR.

However, this would require offline data which is not available a priori. Nonetheless, just

for the purpose of comparison, this has been implemented based on offline data obtained

from the original unstable plant. The resulting norm of the state has been depicted in cyan

labeled as “Offline data+DeePC”. Due to the ill-posedness of the data matrix resulting from

an unstable plant, it is observed that the practical tuning of the parameters could be prob-

lematic. This is due to the fact that maintaining the stability and feasibility of the resulting

convex optimization problems is challenging due to conditioning in the dataset (for similar

observations see for example [De Persis and Tesi, 2019]). These trajectories are terminated

whenever the corresponding optimization problem was not numerically solvable/feasible. We

have used the CVXPY package for solving the convex programs derived in all these cases

[Diamond and Boyd, 2016].

Finally, the convergence of DGR algorithm in terms of the designed controller Kt is

illustrated in Figure 4.9, where the values are seen to be well behaved after 30 to 40 iterations

from the noisy dynamics. Furthermore, we note that as the process noise ωt decreases, the

error for Kt tends to zero; in the absence of noise, the limiting error is in fact negligible.

In these examples, the bound derived in Theorem 4.17–that requires the knowledge of

Anew– is plotted in green for comparison. The behavior of the bound follows our observations

in Remark 4.18; the bound increases as the algorithm initially tries to “detect” the unstable
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Figure 4.5: The state trajectory of X-29 in ND-PA mode with and without DGR for longi-

tudinal control.

Figure 4.6: The state trajectory of X-29 in ND-PA mode with and without DGR for lateral-

directional control.
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Figure 4.7: The state trajectory of X-29 in ND-UA mode with and without DGR for longi-

tudinal control.

Figure 4.8: The state trajectory of X-29 in ND-UA mode with and without DGR for lateral-

directional control.
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Figure 4.9: The convergence behavior of DGR algorithm for longitudinal and lateral-

directional dynamics for both of flight modes.

modes, followed by suppressing these modes for regulation. We finally note that for large

enough iterations, the rate of change of the upper bound is dictated by ρ(Ãnew), which in

this case, is slightly less than one.16

4.9 Remarks and Future Directions

In this chapter, we have introduced and characterized “regularizability,” a novel system theo-

retic notion that quantifies the ability of data-driven finite-time regulation for a linear system.

This notion is in contrast to asymptotic behavior of the system, which is commonly char-

acterized by stabilizability/controllability. Furthermore, we have proposed DGR, an online

iterative feedback regulator for a partially unknown, potentially unstable, linear system us-

ing streaming data from a single trajectory. In addition to regulation of an unknown system,

DGR leads to informative data that can subsequently be used for data-guided stabilization

16The code for these simulations can be found at https://github.com/shahriarta/

Data-Guided-Regulation.

https://github.com/shahriarta/Data-Guided-Regulation
https://github.com/shahriarta/Data-Guided-Regulation


132

or system identification.17 Along the way, we have provided another system theoretic notion

referred to as “instability number” in order to analyze the performance of DGR and derive

bounds on the trajectory of the system over a finite-time interval. Subsequently, we pre-

sented the application of the proposed online synthesis procedure on a highly maneuverable

unstable aircraft. This example underscores how DGR can be integrated with other state-

of-the-art data driven methods to achieve better performance through improved numerical

conditioning.

The extensions of the results presented in this chapter to noisy dynamics as well as consid-

ering an unknown input matrix—in price of the guaranteed performance from the onset—are

deferred to our future work. Furthermore, state regulation becomes more challenging when

one only relies on partial observation of system’s trajectory or when the system is known to

have multi-scale dynamics. Finally, our setup would be more practical considering input con-

straints, e.g., rate limits. While it is straightforward to address such extensions via convex

constraints in the proposed DGR procedure, analysis of the resulting closed loop trajectory

is more involved. The result of this chapter has been mainly adapted from [Talebi et al.,

2021b].

Finally, recalling the result of Chapter 3, we considered the problem of collectively opti-

mizing a distributed cost over a network of agents. That can be viewed as a cooperative game

among these agents and a natural question in this setting would be what if the agents do not

cooperate; rather, they tend to act only in their own favor–knowing that other agents might

do the same. This viewpoint then motivates the problem of learning the Nash equilibrium

for network of agents with “distributed cost”. This is the topic of next chapter, where we

provide algorithms for learning the Nash equilibrium among (static) distributed agents with

regret-type guarantees.

17 This is guaranteed for example when α = 0.
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Chapter 5

DISTRIBUTED LEARNING IN NETWORK GAMES:
A DUAL AVERAGING APPROACH

In this chapter, we propose a distributed no-regret learning algorithm for network games

using a primal-dual method, i.e., dual averaging. With only locally available observations,

we consider the scenario where each player optimizes a global objective, formed by local

objective functions on the nodes of a given communication graph. Our learning algorithm for

each player involves taking steps along their individual pay-off gradients, dictated by local

observations of the other player’s actions–where the local nature of information exchange

is encoded by the network. The output is then projected back- again locally-to the set

of admissible actions for each player. We provide the regret analysis of this distributed

learning algorithm for the case of a deterministic network that is subjected to two teams

with distinct objectives, and obtain O(
√
T log(T )) regret bound. Our analysis indicates the

key correlation between the rate of convergence and network structure/connectivity that

also appears in the distributed optimization setup via dual averaging. Finally, illustrative

examples showcase the performance of our algorithm in relation to the size and connectivity

of the communication network.

5.1 Introduction

Networked systems analysis has been on the cutting edge of multi-disciplinary research over

the past few years with applications spanning from robotic swarms to biological networks.

Common to all of these systems, a global objective is achieved based on local interactions–

which in turn– require local decision-making that is inherently restricted by limited informa-

tion exchange and prescribed set of admissible policies [Mesbahi and Egerstedt, 2010]. As
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such, many computationally efficient optimization algorithms [Nemirovsky and Yudin, 1983;

Nesterov, 2009; Xiao, 2010; Sedghi et al., 2019] when implemented on a network have scaling

issues when the network size grows. Not surprisingly, there has been an extensive literature

on exploiting the structure of a information-exchange graph in order to reduce the complex-

ity of distributed methods built upon subgradient optimization [Nedić and Ozdaglar, 2009],

mirror decent [Doan et al., 2019], and dual averaging [Duchi et al., 2012], just to name a few.

In the meantime, while these works mainly focus on a cooperative information sharing, many

of the real-world systems exhibit non-cooperative behaviors due to a plethora of reasons in-

cluding intrusions/attacks, greedy agents, competition for constrained resources, misaligned

incentives, or the adversarial nature of environments that necessitate a game-theoretical

model.

Game theory has been successfully employed in non-cooperative decision-making [Basar

and Olsder, 1995; Engwerda, 2005a; Lambertini, 2018]. A variety of dynamic games including

zero-sum, non-zero-sum [Starr and Ho, 1969] and Stackelberg games [Simaan and Cruz,

1973] have been studied in the literature for decades that model various non-cooperative

interactions among decision makers, in scenarios such as network security [Manshaei et al.,

2013], wireless networks [Srivastava et al., 2005; Han et al., 2012], and multi-agent systems

such as pursuit evasion games [Vidal et al., 2002; Talebi et al., 2017],

Conventional centralized game-theoretic machinery are barely leveraged in real-world

decision-making due to poor computational performance, lack of information, and policy

limitations. In this direction, well-established algorithms such as primal-dual methods have

been used for convergence analysis of learning and optimization in the game setup. For

instance, by introducing variational stability condition, [Mertikopoulos and Zhou, 2018] con-

siders a centralized multiagent decision process where each agent employs an online mirror

descent learning algorithm. Also, [Bravo et al., 2018] studies the behaviour of learning with

“bandit” feedback (a framework for low-information environments) in non-cooperative con-

cave games. However, in spite of the improved convergence rates, scalability and limited

communications are inherent source of intractability in these learning algorithms.
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As the key connection, Nash Equilibrium (NE) plays a central role in game theory roughly

defined as a strategy from which no player has any incentive to deviate unilaterally. Upon

the convexity and continuous differentiability, the NE can be characterized as the solution

of a variational inequality (VI) problem. Distributed Nash seeking refers to the class of

problems that aims for learning a global NE with only local information [Li and Marden,

2013; Salehisadaghiani and Pavel, 2018; Frihauf et al., 2011; Alpcan and Başar, 2005]. In this

direction, each node in the network usually represents an individual player, e.g., [Tatarenko

et al., 2018] proposes an accelerated gradient decent for monotone games, [Gharesifard and

Cortés, 2013] considers a zero-sum game between two networks characterizing conditions

for convergence to NE, and [Grammatico, 2018] leverages proximal map composed with an

averaging map where, under specific assumptions on the topology of the graph connecting

agents, the overall algorithmic map becomes non-expansive. Additionally, the existence of

a unique Nash equilibrium can be guaranteed under assumptions on the admissible action

sets (like compactness) and the game Jacobian (like monotonicity and its variants) [Rosen,

1965; Facchinei and Pang, 2003; Parise and Ozdaglar, 2019].

In this chapter, we introduce a non-cooperative game between two teams, each consisting

of players that interact over a network. While the goal of each team is to learn the global NE,

players have no information about the other side, neither do they enjoy a global decision-

making capability. Thus the equilibrium learning is only based on local observations of the

opponent actions and distributed decision-making of nodes within their team. This setup

resembles a scenario where each node in the network is subjected to actions that contribute

to distinct objectives–in this sense, there is duality in the interactions between nodes in the

network. For example, each node can represent a socio-economic entity, with objectives that

are not completely aligned with each other (altruistic vs. profit-seeking). Financial networks

consisting of nodes that are subjected to political influence from two opposing parties yet

provide another scenario of interest. The network in these scenarios provides the backbone for

information exchange and coordination amongst the teams. As such, it becomes imperative

to characterize the role of the network in the evolution of team’s strategies, potentially
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towards NE. Of prime interest in this chapter is how algebraic and combinatorial properties

of the network, such as its connectivity, contribute to the convergence of distributed learning

in the context of games. The choice of a primal/dual approach that is built around dual

averaging [Nesterov, 2009], and its online implementation [Xiao, 2010], is primary motivated

by this overarching objective; this choice is also consistent with how dual averaging has

been used in the context of distributed optimization to underscore the “network-effect” on

the convergence and optimality properties of distributed optimization, where there is no

“duality” in the nodes’ operation. However, in order to extend the work of [Duchi et al.,

2012] to the game setting, one has to pay a particular attention to the information structure,

as for example, it would be unreasonable to assume information sharing with the opponents

in the game setting.

Accordingly, in our contribution: (1) We suppose players have neither a priori informa-

tion about their adversary, nor global coordination over the network. Instead, they have a

chance to choose a local strategy at each node and receive a local cost (reward), resulting

in learning the global NE in a distributed fashion, (2) It is shown that the algorithm enjoys

a similar regret bound as dual averaging methods which is well-known to be tight in black-

box setting [Nemirovsky and Yudin, 1983]. We also discuss the convergence of the running

average of actions to NE at each node under stronger regularity assumptions.

The rest of the chapter is organized as follows: In §5.2 we provide a quick overview of

mathematical tools that are used in the chapter. In §5.3 we introduce the problem setup

and propose our method. In §5.5 the required foundations to ultimately prove O(
√
T log(T ))

regret bound associated with our algorithm are built up. We provide an illustrative example

in §5.6.

5.2 Mathematical Preliminaries

We denote by R the set of real numbers. A column vector with n elements is referred to as

v ∈ Rn, where vi represents the ith element in v. The matrix M ∈ Rp×q contains p rows and

q columns with Mij denoting the element in the ith row and jth column of M . The square
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matrix N ∈ Rn×n is symmetric if N⊤ = N , where N⊤ denotes the transpose of the matrix N .

The n×1 vector of all ones is denoted by 1. A doubly stochastic matrix P ∈ Rn×n is defined

as a non-negative square matrix such that
∑

j Pij =
∑

j Pjk = 1 for all i and k, and σ2(P )

indicates the second largest singular value of P . We define [n] = {1, . . . , n}. The Euclidean

norm of a vector x ∈ Rn is defined as ∥x∥ = (x⊤x)1/2 = (
∑n

i=1 x
2
i )

1/2 and the dual norm to

∥x∥ is denoted by ∥x∥∗ := sup∥u∥=1⟨x, u⟩. Also, the 1-norm is defined as ∥x∥1 =
∑n

i=1 |xi|.
A function f is convex if f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) for all θ ∈ (0, 1) and for all

x, y in its convex domain, and g is a subgradient of f at point z if f(y) ≥ f(z)+g⊤(y−z) for

all y. If f is convex and differentiable, the gradient of f , ∇f(x), is also a subgradient of f

at x. The set of all subgradients of f at x is called subdifferential and denoted by ∂f(x). A

graph is characterized by the 2-tuple G = (V , E), where V is the set of nodes and E ⊆ V ×V
denotes the set of edges. An edge exists from node i to j if (i, j) ∈ E which can also be

shown by j ∈ Ni where Ni is the set of neighbors of node i. Then we say a graph is complete

if (i, j) ∈ E for all nodes i, j, and is random k-regular if |Ni| = k for all i in some random

order, and is called a cycle in case j ∈ Ni if and only if j = i ± 1 with a cyclic order, i.e.,

(1, n) ∈ E in case there are n nodes in the graph.

5.3 Background and Problem Formulation

In this section we introduce the main framework of our analysis. Herein, we briefly mention

some background material on dual averaging which is the workhorse of our methodology. We

then continue by proposing the distributed setup followed by a two-player game-theoretic

framework, which can be generalized to multi-player setting with minimum extra effort.

5.3.1 Standard Dual Averaging

The dual averaging algorithm proposed by Nesterov [Nesterov, 2009] is a subgradient scheme

for non-smooth convex problems. The primal-dual nature of this method generates two

sequence of iterates {x(t), z(t)}∞t=0 contained within X ×Rd such that the updates of z(t) is

responsible for averaging the support functions in the dual space, while the updates of x(t)
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establishes a dynamically updated scale between the primal and dual spaces. More precisely,

after receiving the subgradient g(t) ∈ ∂f(x(t)) at iteration t, the algorithm is updated as

follows,

z(t+ 1) = z(t) + γ(t)g(t),

x(t+ 1) = Πψ
X (−z(t+ 1), α(t)),

(5.1)

where γ(t) > 0, {α(t)}∞t=0 is a positive non-increasing sequence, and

Πψ
X (z, α) := argminx∈X

{
⟨−z, x⟩+

1

α
ψ(x)

}
(5.2)

is a generalized projection according to a strongly convex prox-function ψ(.).

5.3.2 Our Model

We consider the distributed learning problem for a game between two teams (players), both

playing on a network consisting of n nodes connected via a communication graph G 1. To this

end, each team has a representative on each node, hence 2n members in total (Figure 5.1).

The teams are grouped within the sets Iℓ = {(ℓ, 1), . . . , (ℓ, n)} for ℓ ∈ {A,B} and each team

has a choice of action xℓ ∈ Xℓ ⊂ Rdℓ that minimizes the following global cost:

fℓ(xA, xB) =
1

n

n∑

i=1

fℓ,i(xA, xB), (5.3)

which is the average of its members’ costs at each node i, denoted by fℓ,i. The goal is to

learn a global NE while players have no global decision-making capability. Instead, G is

assumed to be connected and players can communicate within their own team according to

the network structure.

To learn a global NE, each team updates the state of its nodes using a distributed dual

averaging type method. The network-based information flow of our algorithm is related

to [Duchi et al., 2012] in the sense of consensus error of the dual variable, however, in a

1It is worth noting that different networks could be associated with each team where the communication
graph would be their overlaps, which is not considered here due to brevity.
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Figure 5.1: Schematic of our game setup including two teams (red A and blue B) with each

team having a representative at each node.

non-cooperative game-theoretic setup, convergence of such iterative methods to NE is non-

trivial due to nature of equilibria, limited information exchange, etc. Sufficient conditions of

convergence is further discussed in §5.5.

In our proposed algorithm, at each node i and iteration t, player ℓ ∈ {A,B} maintains

an estimate of its team’s action as xℓ,i(t). A communication protocol is designed for sharing

dual variables among the nodes of each team, where node i updates its dual variable zℓ,i(t)

using a convex combination of those of its neighboring teammates. Then it maps zℓ,i(t) back

to the set of admissible actions Xℓ followed by taking its local action xℓ,i(t). Subsequently,

players observe the actions of the opponent at each node and locally obtain an estimate of

the subgradient of their distributed cost (or reward). We show that under some regularity

assumptions, this process provides players with enough local information to decide about

the next step and eventually learn the global NE.

5.4 Algorithm: TDA

We assume that the structure of G induces a doubly stochastic matrix Pℓ available to each

team where Pℓ,ij > 0 if and only if nodes i and j are connected. Then each player ℓ ∈ {A,B}
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at iteration t and each node i ∈ V computes updates by the following,

zℓ,i(t+ 1) =
∑

j∈Nℓ,i

Pℓ,ijzℓ,j(t) + γℓ(t)gℓ,i(t),

xℓ,i(t+ 1) = Πψ
Xℓ

(
− zℓ,i(t+ 1), αℓ(t)

)
,

(5.4)

where zℓ,i and xℓ,i are the dual variable and the local action of player ℓ at node i respectively,

gℓ,i is a subgradient of the local cost fℓ,i at the local actions xℓ,i(t) as,

gℓ,i(t) ∈ ∂ℓfℓ,i(xA,i(t), xB,i(t)), (5.5)

where ∂ℓ is the differential w.r.t. the action of player ℓ. Finally, αℓ(t) and γℓ(t) are sequences

of positive stepsize with αℓ(t) being non-increasing. Note that xℓ,i can be viewed as the

local copy of xℓ at node i, and its updates require access to only the ith row of the matrix

Pℓ. We refer to the updates in (5.4) as TDA. The proposed methodology is summarized in

Algorithm 5.1. We define the running local average at node i, for player ℓ ∈ {A,B} as,

x̂ℓ,i(t) :=
1

t

t∑

s=0

xℓ,i(s). (5.6)

In the sequel, we first show the sub-linear regret bound for TDA algorithm with appropriate

choices of stepsizes. Finally, we discuss future directions regarding convergence of action

iterates to NE under more regularity conditions.

5.5 Analysis of TDA

In this section, we present the main results of the chapter and the corresponding analysis.

We first make a few key assumptions that are used in our subsequent analysis.

Assumption 5.1. The undirected communication graph G is connected.

Assumption 5.2. The cost functions fA and fB satisfy the following:

1. The cost fA(., x2) : XA 7→ R is convex for any x2, and similarly, the cost fB(x1, .) :

XB 7→ R is convex for any x1.
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Algorithm 5.1: Team-based Dual Averaging (TDA)

1: Inputs: For player ℓ

2: Local black-box oracle at node i to compute a subgradient of the local cost at any

test point

3: Doubly stochastic matrix Pℓ induced by the network structure

4: Outputs:

5: Estimates of NE x̂ℓ,i(t) at node i for player ℓ

6: Initialize:

7: t = 0

8: For Player ℓ ∈ {A,B} at node i ∈ [n]

9: zℓ,i(0) = 0

10: Take random action xℓ,i(0)

11: while convergence

12: For Player ℓ ∈ {A,B} at node i ∈ [n]

13: Observe the opponents local action and get

14: gℓ,i(t) ∈ ∂ℓfℓ,i(xA,i(t), xB,i(t))
15: For Player ℓ ∈ {A,B} at node i ∈ [n]

16: Update the dual variable zℓ,i(t+ 1) by (5.4)

17: Calculate and take action xℓ,i(t+ 1) by (5.4)

18: t = t+ 1

19: Return: the running average x̂ℓ,i by (5.6)
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2. The cost fA(., x2) is LA-Lipschitz continuous for any x2 such that |fA(x1, x2)−fA(x′1, x2)| ≤
LA∥x1− x′1∥, ∀x1, x′1 ∈ XA. Similarly, the cost fB(x1, .) is LB-Lipschitz continuous for

any x1, i.e., |fB(x1, x2)− fB(x1, x
′
2)| ≤ LB∥x2 − x′2∥, ∀x2, x′2 ∈ XB.

In contrast with optimization problems where the notion of “optimality” plays a central

role, in a game setup, the objective is seeking an equilibrium rather than an “optimal” solu-

tion. In order to incorporate the interactions of players in convergence analysis of distributed

algorithms, monotonicity has been known as a useful sufficient condition for problem “reg-

ularity,” originally due to the seminal work by Rosen [Rosen, 1965]. The monotonicity as

defined by Rosen, and subsequently used in the game literature (e.g., [Facchinei and Pang,

2003; Parise and Ozdaglar, 2019] and references therein), refers to the property of the opera-

tor generated by the pseudo-gradient map of the game. The monotonicity condition provides

sufficient condition for convergence of the action iterates which is discussed in Section §5.5.5.

5.5.1 Regret Analysis

First, we introduce two lemmas that equip us with the required tools to prove the basic

convergence. Herein, we borrow some tools from prior works, as such, we only mention the

key steps that distinguishes our contribution in the game setup. Also, it is worth mentioning

that even though we prove convergence of TDA with γℓ(t) = 1, this choice can improve the

convergence rates numerically and its characteristics will be analyzed in a followup work.

For that, let us define f̃A( . ; t) and f̃B( . ; t) as follows

f̃A( · ; t) :=
1

n

n∑

j=1

fA,j( · , xB,j(t)),

f̃B( · ; t) :=
1

n

n∑

j=1

fB,j(xA,j(t), · ),

where xA,i(t) and xB,j(t) are the sequence generated by TDA algorithm. Now, for ℓ ∈ {A,B}
we define R(i)

ℓ to be the regret of player ℓ for implementation of TDA algorithm at node i
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versus any fixed action x∗ℓ while the other player is also implementing TDA, i.e.

R(i)
ℓ (T ) :=

T∑

t=1

f̃ℓ(xℓ,i(t); t)−
T∑

t=1

f̃ℓ(x
∗
ℓ ; t). (5.7)

Lemma 5.3. Following Algorithm 5.1, suppose that player ℓ ∈ {A,B} has access to gℓ,i

for (ℓ, i) ∈ Iℓ at each node i ∈ [n], and {αℓ(t)}∞t=0 is a non-increasing sequence of positive

stepsizes and γℓ(t) = 1. Then under Assumption 5.2 at each node, for any fixed x∗ =

(x∗A, x
∗
B) ∈ XA ×XB at node i,

R(i)
ℓ (T ) ≤ ψ(x∗ℓ)

αℓ(T )
+
L2
ℓ

2

T∑

t=1

αℓ(t− 1) + Lℓ

T∑

t=1

αℓ(t)
(
Z(i)
ℓ (t) +

2

n

n∑

j=1

Z(j)
ℓ (t)

)

where Z(i)
ℓ (t) = ∥z̄ℓ(t)−zℓ,i(t)∥∗ is the consensus error at each time with z̄ℓ(t) = 1

n

∑n
i=1 zℓ,i(t)

as the averaging factor in the dual space.

Proof. For each team as the generalized projection, define

yℓ(t) := Πψ
Xℓ

(−z̄ℓ(t), α(t)) = argminx∈Xℓ

{ t−1∑

s=1

⟨ 1
n

n∑

i=1

gℓ,i(s), x⟩+
1

αℓ(t)
ψ(x)

}
, (5.8)

which follows from the iterative form of z̄ℓ(t),

z̄ℓ(t+ 1) = z̄ℓ(t) +
1

n

n∑

j=1

gℓ,j(t),

and the zero choice of the dual initialization, where the above iterative form is implied by

the doubly stochastic nature of Pℓ.

Now using the LA-Lipschitz property of fA we can show that,

R(i)
A (T ) ≤

T∑

t=1

[
f̃A(yA(t))− f̃A(x∗A)

]
+

T∑

t=1

LA∥yA(t)− xA,i(t)∥.

Also, by adding and subtracting
∑

j fA,j(xA,j(t), xB,j(t)) to the first term and using convexity

we have,

R(i)
A (T ) ≤

T∑

t=1

1

n

n∑

j=1

⟨gA,j(t), xA,j(t)−x∗A⟩+
T∑

t=1

LA
n

n∑

j=1

[∥yA(t)− xA,j(t)∥+ ∥yA(t)− xA,i(t)∥] .
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where gA,j(t) ∈ ∂AfA,j(xA,j(t), xB,j(t)) and the LA-Lipschitz condition is leveraged again.

Then by adding and subtracting yA(t) in the inner-product we get that

R(i)
A (T ) ≤

T∑

t=1

1

n

n∑

j=1

⟨gA,j(t), yA(t)− x∗A⟩+
T∑

t=1

LA
n

n∑

j=1

[2∥yA(t)− xA,j(t)∥+ ∥yA(t)− xA,i(t)∥]

≤
T∑

t=1

⟨ 1
n

n∑

j=1

gA,j(t), yA(t)− x∗A⟩+
LA
n

T∑

t=1

αA(t)
n∑

j=1

[
2Z(j)

A (t) + Z(i)
A (t)

]
,

resulted from the LA-Lipschitz property of fA and α-Lipschitz continuity of the generalized

projection Πψ
X (., α) (which is a direct consequence of Lemma 1 in [Nesterov, 2009]) . Finally,

the results follows by applying Theorem 2 and Equation (3.3) in [Nesterov, 2009] (also

restated as Lemma 3 in [Duchi et al., 2012]) to the first term in the inequality above and

using the fact that ∥gA,j∥∗ ≤ LA. Similar analysis results in the bound for R(i)
B (T ).

5.5.2 Choice of the learning rate αℓ(t)

In order to achieve convergence, an appropriate choice of stepsize (learning rate) αℓ(t) is

required. Next lemma shows how specific choices of αℓ(t) result in practical bounds on R(i)
ℓ

by getting rid of Z(k)
ℓ terms.

Theorem 5.4. Under Assumption 5.1 and 5.2, and notation of Lemma 5.3, suppose that

ψ(x∗ℓ) ≤ R2
ℓ . By choosing the stepsize,

αℓ(t) =
Rℓ

√
1− σ2(Pℓ)√
13Lℓ
√
t

,

for ℓ ∈ {A,B} and γℓ(t) = 1, following Algorithm 5.1 at each node i we get,

R(i)
ℓ (T ) ≤

√
T log(T

√
n)

2
√

13RℓLℓ√
1− σ2(Pℓ)

.

Proof. Stacking the updates of dual variables in (5.4) into a matrix form Zℓ = [zℓ,1 . . . zℓ,n]

and similarly for Gℓ. Then for an undirected graph (P⊤
ℓ = Pℓ), we get

Zℓ(t+ 1) = Zℓ(t)Pℓ +Gℓ(t).
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Define,

Φℓ(t+ 1, s) = P t+1−s
ℓ ,

where Φ can be a model of some transition matrix for a discrete-time linear system with

states Z. This results in,

Zℓ(t+ 1) = Z(s)Φℓ(t+ 1, s) +
t+1∑

r=s+1

Gℓ(r − 1)Φℓ(t+ 1, r)

for 0 ≤ s ≤ t. Noting Φℓ(t + 1, s)1 = 1 and from definitions z̄ℓ(t) = Zℓ(t)1/n and zℓ,i(t) =

Zℓ(t)ei, it is straightforward to show,

z̄ℓ(t)− zℓ,i(t) = z̄ℓ(s)− Z(s)Φℓ(t, s)ei +
t∑

r=s+1

Gℓ(r − 1)[1/n− Φℓ(t, r)ei].

For simplicity we assume zℓ,i(0) = z̄ℓ(0) (say by choosing zℓ,i(0) = 0), then we have z̄ℓ(s) −
Z(s)Φℓ(t, s)ei = 0 at s = 0. This implies,

z̄ℓ(t)− zℓ,i(t) =
t∑

r=1

Gℓ(r − 1)[1/n− Φℓ(t, r)ei].

We can then proceed to bound this error,

∥z̄ℓ(t)− zℓ,i(t)∥∗ ≤ Lℓ

t∑

r=1

∥1/n− Φℓ(t, r)ei∥1,

where we used ∥gℓ,i∥∗ ≤ Lℓ and norm inequalities. Consider the following standard inequality

([Diaconis and Stroock, 1991]),

∥1/n− Φℓ(t, r)ei∥1 ≤
√
nσ2(Pℓ)

t+1−r.

Now we say r is small if r ≤ t+ 1 + log(T
√
n)

log σ2(Pℓ)
, otherwise it is large. Then by splitting the sum,

one would note that for the small r,

∥1/n− Φℓ(t, r)ei∥1 ≤
1

T
,

since σ2(Pℓ) < 1. Otherwise, for the large r,

∥1/n− Φℓ(t, r)ei∥1 ≤ 2.
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Then it can be shown that,

Z(i)
ℓ = ∥z̄ℓ(t)− zℓ,i(t)∥∗ ≤ 2Lℓ

log(T
√
n)

1− σ2(Pℓ)
, (5.9)

using log σ2(Pℓ)
−1 ≥ 1− σ2(Pℓ). Then from Lemma 5.3,

R(i)
ℓ (T ) ≤ ψ(x∗ℓ )

αℓ(T )
+
L2
ℓ

2

T∑

t=1

αℓ(t− 1) +
6L2

ℓ log(T
√
n)

1− σ2(Pℓ)
T∑

t=1

αℓ(t).

Define the sequence {α(t)}∞t=0 as,

αℓ(t) =
Kℓ√
t
, αℓ(0) = 1.

Since ψ(x∗ℓ) ≤ R2
ℓ and

∑T
t=1 t

−1/2 ≤ 2
√
T − 1,

R(i)
ℓ (T ) ≤

√
T

[
R2
ℓ

Kℓ
+KℓL

2
ℓ + 12KℓL

2
ℓ

(
log(T

√
n)

1− σ2(Pℓ)

)]
.

Choosing Kℓ =
Rℓ

√
1−σ2(Pℓ)√
13Lℓ

proves the claim.

5.5.3 Convergence of TDA Algorithm

A natural question on the performance of the TDA algorithm pertains to the convergence

of the corresponding action iterates. However, it is known that the convergence of action

iterates for this general class of algorithms cannot be guaranteed without further regularity

assumptions. Nevertheless, with minimal continuity assumptions, our next result ensures

that the point of convergence of TDA algorithm is in fact a NE. First a relevant definition.

Definition 5.5. A network game is called continuous if the cost of player ℓ ∈ {A,B} at

node i ∈ [n] satisfies,

• fℓ,i(xℓ, x−ℓ) is continuously differentiable in xℓ,

• fℓ,i(xℓ, x−ℓ) and ∇fℓ,i(xℓ, x−ℓ) are both continuous in the joint variable (xℓ, x−ℓ).
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Theorem 5.6. Under the notation adopted in Theorem 5.4, for a continuous network game,

if Algorithm 5.1 converges, i.e., xℓ,i(t) → x∗ℓ,i as t → ∞, then x∗ℓ,i = x∗ℓ for all i ∈ [n] and

(x∗ℓ , x
∗
−ℓ) is a NE.

Proof. By continuous differentiability, we have that gℓ,i = ∇fℓ,i for all i and gℓ,i → g∗ℓ,i due

to the joint continuity. Now by αℓ-Lipschitz continuity of the generalized projection we have,

∥xℓ,i(t)− xℓ,j(t)∥ ≤ αℓ(t) [Zℓ,i(t) + Zℓ,j(t)] .

From (5.9) and the choice of αℓ(t) = Kℓ/
√
t we conclude that for all i, j, ∥xℓ,i(t)− xℓ,j(t)∥ →

0 as t→∞, and thus x∗ℓ,i = x∗ℓ for all i. Similarly, this implies yℓ(t)→ x∗ℓ since,

∥yℓ(t)− x∗ℓ∥ ≤ αℓ(t)Zℓ,i(t) + ∥xℓ,i(t)− x∗ℓ∥ .

The rest of the proof is by contradiction. Suppose x∗ = (x∗ℓ , x
∗
−ℓ) is not a NE and define

G∗
ℓ = Gℓ(x

∗). Then by definition of NE in our setup and noting that ∇ℓfℓ(x
∗) = G∗

ℓ1/n,

at least for one of the players (say player ℓ) we have the following (Proposition 1.4.2 in

[Facchinei and Pang, 2003]),

∃qℓ ∈ Xℓ s.t. ⟨G∗
ℓ1/n, qℓ − x∗ℓ⟩ < 0.

By continuity there exist a constant c > 0 and neighborhoods U, V of points x∗ℓ , G
∗
ℓ1/n,

respectively, such that,

⟨G′
ℓ1/n, qℓ − x′ℓ⟩ ≤ −c, ∀x′ℓ ∈ U, ∀G′

ℓ s.t. G′
ℓ1/n ∈ V.

On the other hand, by definition of Πψ
X and yℓ as in (5.8), and strong convexity of ψ we can

conclude that (Theorem 23.5 in [Rockafellar, 2015]) −αℓ(t)z̄ℓ(t) ∈ ∂ψ(yℓ(t)), and therefore,

ψ(qℓ)− ψ(yℓ(t)) ≥ −αℓ(t)⟨z̄ℓ(t), qℓ − yℓ(t)⟩.

Note that by convergence of yℓ(t), there exists N such that yℓ(t) ∈ U and Gℓ(t)1/n ∈ V ,

∀t ≥ N . Furthermore, z̄ℓ(t) =
∑t−1

r=1Gℓ(r)1/n since zℓ,i(0) = z̄ℓ(0); thus we can conclude
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that

ψ(qℓ)− ψ(yℓ(t))

≥ αℓ(t)
∑t−1

r=N c− αℓ(t)⟨
∑N−1

r=1 Gℓ(r)1/n, qℓ − yℓ(t)⟩.

Now as t→∞ the right hand side of the above inequality approaches positive infinity, which

is a contradiction.

5.5.4 Convergence of Function Values using Cross-monotonicity assumption

Here, we propose cross-monotonicity as a regularity assumption that refers to the operator

Ω generated by the cross-pseudo-gradient map defined below. The reason for introducing

this new regularity condition in the context of network games is to achieve convergence of

function values, even though the action iterates might not converge necessarily. Later in

Section §5.5.5, the conventional monotonicity is discussed that can ensure the convergence

of action iterates.

Definition 5.7. (Cross-monotonicity) A two-player game setup with cost functions f1(x1, x2)

and f2(x1, x2) is cross-monotone if

〈
Ω(x1, x2)− Ω(x∗1, x

∗
2), (x1, x2)− (x∗1, x

∗
2)
〉
≥ 0, (5.10)

for all (x1, x2), (x
∗
1, x

∗
2) ∈ X1×X2 where Ω is a 2-tuple defined as Ω(x1, x2) =

(
ξ(x1, x2), ζ(x1, x2)

)

with any

ξ(x1, x2) ∈ ∂1f2(x1, x2), ζ(x1, x2) ∈ ∂2f1(x1, x2).

The above inner-product is defined over the product space Rd1 × Rd2 .

Assumption 5.8. The cost fA(x1, .) : XB 7→ R is concave for any x1, and similarly, the cost

fB(., x2) : XA 7→ R is concave for any x2.
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Proposition 5.9. Under Assumptions 5.1, 5.2 and 5.8 at each node and notations in

Lemmas 5.3 and Theorem 5.4, if x∗ is a global NE and the game is cross-monotone, then

following Algorithm 5.1 at each node i we get,

lim
T→∞

F (i)
A (T ) = lim

T→∞
F (i)
B (T ) = 0,

where

F (i)
A (t) = fA(x̂A,i(t), x

∗
B)− fA(x∗A, x

∗
B),

F (i)
B (t) = fB(x∗A, x̂B,i(t))− fB(x∗A, x

∗
B),

H(i)
A (t) =

〈
h∗A,i(t)− hA,i(t), xB,i(t)− x∗B

〉
,

H(i)
B (t) =

〈
h∗B,i(t)− hB,i(t), xA,i(t)− x∗A

〉
.

with x̂ℓ,i(t) defined as in (5.6), and hℓ,i and h
∗
ℓ,i as the sub-gradients of fℓ,i detailed below,

hA,i(t) ∈ ∂BfA,i(xA,i(t), xB,i(t)), h∗A,i(t) ∈ ∂BfA,i(x∗),

hB,i(t) ∈ ∂AfB,i(xA,i(t), xB,i(t)), h∗B,i(t) ∈ ∂AfB,i(x∗).

Proof. Convexity of fA (in its first element) results in,

F (i)
A (T ) ≤ 1

T

T∑

t=1

fA(xA,i(t), x
∗
B)− fA(x∗),

Using the LA-Lipschitz property of fA and α-Lipchitz continuity of the generalized pro-

jection Πψ
X (., α) (similar as in lemma 5.3) we can show that,

1

T

T∑

t=1

fA(xA,i(t), x
∗
B)− fA(x∗) ≤ 1

T

T∑

t=1

fA(yA(t), x∗B)− fA(x∗) +
LA
T

T∑

t=1

αA(t)Z(i)
A (t).

By adding and subtracting
∑

j fA,j(xA,j(t), x
∗
B), we have the following bound,

fA(yA(t), x∗B)− fA(x∗) ≤ LA
n

n∑

j=1

∥yA(t)− xA,j(t)∥+
1

n

n∑

j=1

fA,j(xA,j(t), x
∗
B)− fA,j(x∗).

Also, by adding and subtracting we get,

fA,j(xA,j(t), x
∗
B)− fA,j(x∗A, x∗B) =

(
fA,j(xA,j(t), x

∗
B)− fA,j(xA,j(t), xB,j(t))

)

+
(
fA,j(xA,j(t), xB,j(t))− fA,j(x∗A, xB,j(t))

)

+
(
fA,j(x

∗
A, xB,j(t))− fA,j(x∗A, x∗B)

)
.
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Now by Assumption 5.8, we can determine the following bound,

fA(yA(t), x∗B)− fA(x∗) ≤ LA
n

n∑

j=1

αA(t)Z(j)
A (t) +

1

n

n∑

j=1

〈
gA,j(t), xA,j(t)− x∗A

〉
+

1

n

n∑

j=1

H(j)
A (t).

Also similar to the proof of lemma 5.3, by using Theorem 2 and Equation (3.3) in [Nesterov,

2009] (or Lemma 3 in [Duchi et al., 2012]) we have,

1

n

T∑

t=1

n∑

j=1

〈
gA,j(t), xA,j(t)− x∗A

〉
≤

T∑

t=1

〈 1

n

n∑

j=1

gA,j(t), yA(t)− x∗A
〉

+
LA
n

T∑

t=1

n∑

j=1

αA(t)Z(j)
A (t)

≤ 14RℓLℓ
√
T√

13
√

1− σ2(Pℓ)
+
LA
n

T∑

t=1

n∑

j=1

αA(t)Z(j)
A (t)

By combining all the preceding upper bounds we have that,

F (i)
A (T ) ≤ LA

nT

T∑

t=1

n∑

j=1

αA(t)[2Z(j)
A (t) + Z(i)

A (t)] +
14RℓLℓ√

13
√

1− σ2(Pℓ)
√
T

+
1

nT

T∑

t=1

n∑

j=1

H(j)
A (t).

By doing similar analysis for F (i)
B (T ), using (5.9), and the step size in theorem 5.4 we get

that,

F (i)
A (T ) + F (i)

B (T ) ≤ log(T
√
n)√

T

∑

ℓ∈{A,B}

2
√

13RℓLℓ√
1− σ2(Pℓ)

+
1

T

1

n

T∑

t=1

n∑

j=1

H(j)
A (t) +H(j)

B (t).

Expanding the last term, and defining the operator Ωj (as in (5.10) for f1 = fA,j and

f2 = fB,j) we get,

H(j)
A (t) +H(j)

B (t) = −
〈
Ωj(xA,j(t), xB,j(t))− Ωj(x

∗
A, x

∗
B),
(
xA,j(t), xB,j(t)

)
− x∗

〉

Since the game is cross-monotone at each node, i.e., the operator Sj is monotone (specifically

at ξ = hB,j and ζ = hA,j) and we get that H(j)
A (t) +H(j)

B (t) ≤ 0. Hence,

F (i)
A (T ) + F (i)

B (T ) ≤ log(T
√
n)√

T

∑

ℓ∈{A,B}

2
√

13RℓLℓ√
1− σ2(Pℓ)

Finally, since x∗ is a global NE, F (i)
A (T ),F (i)

B (T ) ≥ 0 and the convergence will subsequently

be guaranteed.
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5.5.5 Convergence of Action Iterates

For simplicity, suppose that fA and fB are differentiable, then under Assumption 5.2.1 a NE

exists [Facchinei and Pang, 2003]. Define the operator Q generated as the pseudo-gradient

map as Q(x1, x2) =
(
∇AfA(x1, x2),∇BfB(x1, x2)

)
. Additionally, suppose that Q is (strictly)

monotone, i.e.
〈
Q(x1, x2)−Q(x∗1, x

∗
2), (x1, x2)− (x∗1, x

∗
2)
〉
≥ 0,

for all (x1, x2), (x
∗
1, x

∗
2) ∈ XA × XB with equality if and only if (x1, x2) = (x∗1, x

∗
2) (where

inner-product is defined over the product space RdA×RdB). Then it follows that there exists

a unique NE [Facchinei and Pang, 2003] (see also Theorem 2 in [Rosen, 1965], where also a

sufficient condition for this monotonicity condition is given in terms of the game Jacobin).

Finally, combining this regularity assumption with the convergence of TDA algorithm in

function values can facilitate establishing of convergence of the running average of action

iterates to the unique NE , and will be investigated in a followup work.

5.6 Numerical Simulations

In this section we illustrate the performance of our method for a two-team game on a network

where each player has an objective,

fℓ,i(xℓ, x−ℓ) =
1

2
∥xℓ − aℓ,i∥2 +

1

4
⟨xℓ, x−ℓ − bℓ,i⟩

where aℓ,i and bℓ,i are arbitrary prescribed parameters. The information about each player’s

cost is only known locally (at each node) and unknown to the opponent. Although the cost

functions are locally Lipschitz, they can be treated as a Lipschitz continuous function over

any bounded (potentially large) domain. We have simulated the performance of TDA over

complete, random 6-regular, and cycle graphs each consisting of 50 nodes. Figure 5.3 shows

the random 6-regular network simulated here. To illustrate the advantage of dual averaging

in our algorithm, we compare the results with another distributed algorithm — referred to

as TMD — which is an extension of Distributed Mirror Descent algorithm [Doan et al., 2019]
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implemented on our game model, where ψ(.) = 1
2
∥.∥2. Also, as in standard form, the stepsize

of this algorithm βℓ(t) = Kℓ

t0.8
is chosen to be not summable but square summable where Kℓ

is the constant as in Theorem 5.4. The TMD algorithm is detailed in Algorithm 5.2.

We define NAE as the normalized mean of the running average error from NE over all

nodes of the network as follows,

NAE(t) =

∑n
i=1 ∥x̂A,i(t)− x∗A∥+ ∥x̂B,i(t)− x∗B∥∑n
i=1 ∥x̂A,i(0)− x∗A∥+ ∥x̂B,i(0)− x∗B∥

(5.11)

Figure 5.2 shows the NAE at each iteration for both of TDA and TMD algorithms. It can

be noted that on the networks with the same structure, the TDA method has a convergence

rate much faster than the TMD, which is due to dual averaging nature of TDA. Clearly, as

the connectivity of the network decreases from complete to cycle, convergence rate becomes

slower. This is captured in Proposition 5.9 where lower connectivity in the network leads to

an increase of σ2(Pℓ) closer to 1, which results in a larger bound for each time horizon T .

Next, we examine the performance of TDA in terms of the required iteration for a given

error (from the NE). To do so, we consider four complete graphs with 25, 50, 80, and 120

nodes and require the algorithm to achieve a NAE of less than 0.1. Figure 5.4 illustrates

the number of iterations T needed for each network to achieve NAE(T ) < 0.1. Since, the

initialization of the algorithm is random, for each network we have illustrated the mean

and variance of the number of iterations required by 30 realizations. It is clear that, the

number of required iterations to achieve the same error-bound, increases exponentially in this

simulation. Part of this dynamic is due to the fact that TDA is a first-order method in game

setting and it is converging towards an equilibrium point, unlike distributed optimization

case where the convergence is towards an attractive optimal point.

5.7 Remarks and Future Directions

In this chapter, we proposed a new model for network games where each player’s cost is

distributed over a network. Without global information and only with distributed decision-

making for players, we have shown that dual averaging can be applied to the scenario where
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Algorithm 5.2: Team-based Mirror Descent

1: Inputs: For player ℓ ∈ {A,B}
2: Local black-box oracle at node i to compute a subgradient of the local cost at any

test point

3: Doubly stochastic matrix Pℓ induced by the network structure

4: Outputs:

5: Estimates of NE as xℓ,i(t) at node i for player ℓ

6: Initialize:

7: t = 0

8: For Player ℓ ∈ {A,B} at node i ∈ [n]

9: Take random action xℓ,i(0)

10: while convergence

11: For Player ℓ ∈ {A,B} at node i ∈ [n]

12: Observe the opponents action: x−ℓ,i(t)

13: Calculate the average estimate:

14: vℓ,i(t) =
∑

j∈Nℓ,i
Pℓ,ijxℓ,j(t)

15: Get: gℓ,i(t) ∈ ∂ℓfℓ,i(vℓ,i(t), x−ℓ,i(t))
16: For Player ℓ ∈ {A,B} at node i ∈ [n]

17: Calculate and take action

18: xℓ,i(t+ 1) = ProjXℓ
[vℓ,i(t)− βℓ(t)gℓ,i(t)]

19: t = t+ 1

20: Return xℓ,i(t) at node i for player ℓ ∈ {A,B}
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Figure 5.2: NAE at each iteration for both TDA and TMD algorithms in complete, random

6-regular, and cycle graphs with 50 nodes.

Figure 5.3: The random 6-regular networks with 50 nodes simulated in our setup.
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Figure 5.4: Number of iterations needed for each network so that NAE is less than 0.1.

two teams, with distinct objectives, can coordinate with their respective team members,

over the network. In particular, using assumptions adopted in distributed optimization, we

have shown that with proper choice of step-size the regret associated with our algorithm is

sub-linear. Also, with cross-monotonicity condition on the game structure, the convergence

to the function values are guaranteed.

Stochastic access to subgradient of cost functions as well as noisy observations of op-

ponent’s action is considered as the next immediate extension of this work. Additionally,

analysis of the stepsize for the dual variables and equipping the algorithm with feasible

second-order information are yet other achievable furtherance that can improve the conver-

gence behavior of this method close to equilibrium.

Next, the convergence of action iterates is still under investigation. Furthermore, the

practicality of cross-monotonicity property needs to be further examined. Additionally, the

result of this chapter has been mainly adapted from [Talebi et al., 2019].

Finally, in all the chapters so far, we have discussed learning constrained policies in

various control and game settings. Yet, it is known that the estimation problem has various

interesting connections to optimal control problems including “duality”. In other words, one
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can show that the optimal mean-squared estimation problem has a dual reformulation in the

form of an optimal LQR. Then, through this duality, one can learn the optimal estimation

policy directly from output measurement data. This is the subject of the following final

chapter in this dissertation.
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Chapter 6

OPTIMAL FILTERING FOR LINEAR SYSTEMS WITH
UNKNOWN NOISE COVARIANCES

This chapter examines learning the optimal filtering policy, known as the Kalman gain,

for a linear system with unknown noise covariance matrices using noisy output data. The

learning problem is formulated as a stochastic policy optimization, aiming to minimize the

output prediction error. This formulation provides a direct bridge between data-driven

optimal control and, its dual, optimal filtering. Our contributions are twofold. Firstly,

we conduct a thorough convergence analysis of the stochastic gradient descent algorithm,

adopted for the filtering problem, accounting for biased gradients and stability constraints.

Secondly, we carefully leverage a combination of tools from linear system theory and high-

dimensional statistics to derive bias-variance error bounds that scale logarithmically with

problem dimension, and, in contrast to subspace methods, the length of output trajectories

only affects the bias term.

6.1 Introduction

The duality of control and estimation plays a crucial role in system theory, linking two distinct

synthesis problems [Kalman, 1960a,b; Pearson, 1966; Mortensen, 1968; Bensoussan, 2018;

Fleming and Mitter, 1982]. This duality is an effective bridge between two distinct disciplines,

facilitating development of theoretical and computational techniques in one domain and then

adopting them for use in the other. For example, the stability proof of the Kalman filter

relies on the stabilizing characteristic of the optimal feedback gain in the dual LQR optimal

control problem [Xiong, 2008, Ch.9]. In this chapter, we leverage this duality to learn optimal

filtering policies using recent advances in data-driven algorithms for optimal control.



158

We consider the estimation problem for a system with a known linear dynamic and obser-

vation model, but unknown process and measurement noise covariances. Our objective is to

learn the optimal steady-state Kalman gain using a training dataset comprising independent

realizations of the observation signal. This problem has a rich history in system theory, of-

ten explored within the context of adaptive Kalman filtering [Mehra, 1970, 1972; Carew and

Belanger, 1973; Belanger, 1974; Myers and Tapley, 1976; Tajima, 1978]. A comprehensive

summary of four solution approaches to this problem can be found in the classical refer-

ence [Mehra, 1972]. These approaches include Bayesian inference [Magill, 1965; Hilborn and

Lainiotis, 1969; Matisko and Havlena, 2010], Maximum likelihood [Kashyap, 1970; Shumway

and Stoffer, 1982], covariance matching [Myers and Tapley, 1976], and innovation correlation

methods [Mehra, 1970; Carew and Belanger, 1973]. While Bayesian and maximum likelihood

approaches are computationally intensive, and covariance matching introduces biases in prac-

tice, the innovation correlation-based approaches have gained popularity and have been the

subject of recent research [Odelson et al., 2006; Åkesson et al., 2008; Dunik et al., 2009].

For an excellent survey on this topic, refer to the article [Zhang et al., 2020]. However, it is

important to note that these approaches often lack non-asymptotic guarantees and heavily

depend on statistical assumptions about the underlying model.

In the realm of optimal control, significant progress has been made in the development

of data-driven synthesis methods. Notably, recent advances have focused on the adoption of

first-order methods for state-feedback LQR problems [Bu et al., 2019a, 2020a]. The direct

optimization of policies from a gradient-dominant perspective has first proven in [Fazel et al.,

2018] to be remarkably effective with global convergence despite non-convex optimization

landscape. It has been demonstrated that despite the non-convex nature of the cost function,

when expressed directly in terms of the policy, first-order methods exhibit global convergence

to the optimal policy. Building upon this line of work, the use of first-order methods for

policy optimization has been explored in variants of the LQR problem. These include OLQR

[Fatkhullin and Polyak, 2020], model-free setup [Mohammadi et al., 2021a], risk-constrained

setup [Zhao et al., 2023], LQG [Tang et al., 2021], and most recently, Riemannian constrained
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LQR [Talebi and Mesbahi, 2022]. These investigations have expanded the scope of data-

driven optimal control, demonstrating the versatility and applicability of first-order methods

for a wide range of synthesis problems.

The objective of this chapter is to provide fresh insights into the classical estimation

problem by leveraging the duality between control and estimation and incorporating recent

advances in data-driven optimal control. Specifically, building on the fundamental connec-

tion between the optimal mean-squared error estimation problem and the LQR problem

(Prop. 6.3), we reformulate determining the optimal Kalman gain as a problem of synthesiz-

ing an optimal policy for the adjoint system, under conditions that differ from those explored

in the existing literature (see (6.10) and Remark 6.5). Upon utilizing this relationship, we

propose a SGD algorithm for learning the optimal Kalman gain, accompanied by novel

non-asymptotic error guarantees in presence of biased gradient and stability constraint. Our

approach opens up promising avenues for addressing the estimation problem with robust and

efficient data-driven techniques. The following is an informal statement of our main results

(combination of Thm. 6.17 and Thm. 6.24), and missing proofs appear in the supplementary

materials.

Theorem 6.1 (Informal). Suppose the system is observable and both dynamic and measure-

ment noise are bounded. Then, with high probability, direct policy updates using stochastic

gradient descent with small stepsize converges linearly and globally (from any initial stabiliz-

ing policy) to the optimal steady-state Kalman gain.

More recently, the problem of learning the Kalman gain has been considered from a

system identification perspective, for completely unknown linear systems [Lale et al., 2020a;

Tsiamis and Pappas, 2019, 2023; Umenberger et al., 2022]. In [Tsiamis and Pappas, 2019] and

[Tsiamis and Pappas, 2023], subspace system identification methods are used to obtain error

bounds for learning the Markov parameters of the model over a time horizon and establish

logarithmic regret guarantee for output prediction error. Due to the inherent difficulty

of learning a completely unknown stochastic system from partial observations, subspace
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methods assume marginal stability of the unknown system, and lead to sub-optimal sample

complexity bounds that grow with the number of Markov parameters, instead of the number

of unknowns [Tsiamis et al., 2022, pp. 14]. Alternatively, [Umenberger et al., 2022] considers

minimizing the output prediction error and introduces a model-free policy gradient approach,

under the same stability assumptions, that achieves sublinear convergence rate. This work

provides a middle ground between completely known and completely unknown systems, for

a learning scenario that not only has relevant practical implications, but also utilizes the

duality relationship to LQR to establish linear convergence rates even for unstable systems

as long as they are observable.

6.2 Background and Problem Formulation

Herein, first we propose the model setup in detail and discuss the Kalman filter as the

estimation strategy. Consider the discrete-time filtering problem given by the stochastic

difference equations,

x(t+ 1) = Ax(t) + ξ(t), and y(t) = Hx(t) + ω(t), (6.1)

where x(t) ∈ Rn is the state of the system, y(t) ∈ Rm is the observation signal, and {ξ(t)}t∈Z
and {ω(t)}t∈Z are the uncorrelated zero-mean random vectors, that represent the process

and measurement noise respectively, with the following covariances,

E [ξ(t)ξ(t)⊺] = Q ∈ Rn×n, E [ω(t)ω(t)⊺] = R ∈ Rm×m,

for some positive (semi-)definite matrices Q,R ⪰ 0. Let m0 and P0 ⪰ 0 denote the mean

and covariance of the initial condition x0.

In the filtering setup, the state x(t) is hidden, and the objective is to estimate it given the

history of the observation signal Y(t) = {y(0), y(1), . . . , y(t − 1)}. The best mean-squared

error (MSE) estimate of x(t) is defined according to

x̂(t) = arg min
x̂∈σ(Y(t))

E
[
∥x(t)− x̂∥2

]
(6.2)
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where σ(Y(t)) denotes the σ-algebra generated by the history of the observation signal Y(t).

If the model parameters (A,H,Q,R) are known, the optimal MSE estimate x̂(t) can be

recursively computed by the Kalman filter algorithm [Kalman, 1960b]:

x̂(t+ 1) = Ax̂(t) + L(t)(y(t)−Hx̂(t)), x̂(0) = m0, (6.3a)

P (t+ 1) = AP (t)A⊺ +Q− AP (t)H⊺S(t)−1HP (T )A⊺, P (0) = P0, (6.3b)

where S(t) = HP (t)H⊺ + R, L(t) := AP (t)H⊺S(t)−1 is the Kalman gain, and P (t) :=

E[(x(t)− x̂(t))(x(t)− x̂(t))⊺] is the error covariance matrix.

Assumption 6.2. The pair (A,H) is detectable, and the pair (A,B), where Q = BB⊺, is

stabilizable.

Under this assumption, the error covariance P (t) converges to a steady-state value P∞,

resulting in a steady-state Kalman gain L∞ = AP∞H
⊺(HP∞H

⊺ + R)−1[Kwakernaak and

Sivan, 1969; Lewis, 1986]. It is common to evaluate the steady-state Kalman gain L∞ offline

and use it, instead of L(t), to update the estimate in real-time.

6.2.1 Learning problem

Now, we describe our learning setup:

1) The system matrices A and H are known, but the process and the measurement noise

covariances, Q and R, are not available.

2) We have access to an oracle that generates independent realizations of the observation

signal for given length T : {y(t)}Tt=0. However, ground-truth measurements of the state

x(t) is not available.

This setting arises in various important engineering applications, such as aircraft wing dy-

namics, where merely approximate or reduced-order linear models are available due to diffi-

culty in analytically capturing the effect of complex dynamics or disturbances, hence repre-

sented by noise with unknown covariance matrices [Zhang et al., 2020].



162

Inspired by the structure of the Kalman filter, our goal is to learn the steady-state Kalman

gain L∞ from the data described in the learning setup:

Given: independent random realizations of {y(0), . . . , y(T )} with the parameters A,H

Learn: steady-state Kalman gain L∞

For that, we formulate the learning problem as a stochastic optimization described next.

6.2.2 Stochastic optimization formulation

Define x̂L(T ) to be the estimate given by the Kalman filter at time T realized by the constant

gain L. Rolling out the update law (6.3a) for t = 0 to t = T − 1, and replacing L(t) with L,

leads to the following expression for the estimate x̂L(T ) as a function of L,

x̂L(T ) = ATLm0 +
∑T−1

t=0 A
T−t−1
L Ly(t), (6.4)

where AL := A − LH. Note that evaluating this estimate does not require knowledge of

Q or R. However, it is not possible to directly aim to learn the gain L by minimizing the

MSE (6.2) because the ground-truth measurement of the state x(T ) is not available. Instead,

we propose to minimize the MSE in predicting the observation y(T ) as a surrogate objective

function:

minL J
est
T (L) := E [∥y(T )− ŷL(T )∥2] (6.5)

where ŷL(T ) := Hx̂L(T ). Note that while the objective function involves finite time horizon

T , our goal is to learn the steady-state Kalman gain L∞.

Numerically, this problem falls into the category of stochastic optimization and can be

solved by algorithms such as Stochastic Gradient Descent (SGD). Such an algorithm would

need access to independent realizations of the observation signal which are available. The-

oretically however, it is not yet clear if this optimization problem is well-posed and admits

a unique minimizer. This is the subject of following section where certain properties of the

objective function, such as its gradient dominance and smoothness, are established. These
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theoretical results are then used to analyze first-order optimization algorithms and provide

stability guarantees of the estimation policy iterates. The results are based on the duality

relationship between estimation and control that is presented next.

6.3 Estimation-Control Duality Relationship

The stochastic optimization problem (6.5) is related to an LQR problem through the ap-

plication of the classical duality relationship between estimation and control [Åström, 2012,

Ch.7.5]. In order to do so, we introduce the adjoint system (dual to (6.1)) according to:

z(t) = A⊺z(t+ 1)−H⊺u(t+ 1), z(T ) = a (6.6)

where z(t) ∈ Rn is the adjoint state and U(T ) := {u(1), . . . , u(T )} ∈ RmT are the control

variables (dual to the observation signal Y(T )). The adjoint state is initialized at z(T ) =

a ∈ Rn and simulated backward in time starting with t = T − 1. We introduce an LQR cost

for the adjoint system:

JLQR
T (a,UT ) := z⊺(0)P0z(0) +

∑T
t=1 [z⊺(t)Qz(t) + u⊺(t)Ru(t)] , (6.7)

and formalize a relationship between linear estimation policies for the system (6.1) and linear

control policies for the adjoint system (6.6). A linear estimation policy takes the observation

history YT ∈ RmT and outputs an estimate x̂L(T ) := L(YT ) where L : RmT → Rn is a linear

map. The adjoint of this linear map, denoted by L† : Rn → RmT , is used to define a control

policy for the adjoint system (6.6) which takes the initial condition a ∈ Rn and outputs the

control signal UL† = L†(a).

{y(0), . . . , y(T − 1)} L−→ x̂L(T )

{u(1), . . . , u(T )} L†
←− a

The duality relationship between optimal MSE estimation and LQR control is summa-

rized in the following proposition. The proof is presented in the supplementary material.
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Proposition 6.3. Consider the estimation problem for the system (6.1) and the LQR prob-

lem (6.7) subject to the adjoint dynamics (6.6).

1. For any linear estimation policy x̂L(T ) = L(YT ), and for any a ∈ Rn, we have the

identity

E [|a⊺x(T )− a⊺x̂L(T )|2] = JLQR
T (a,UL†(T )), (6.8)

where UL†(T ) = L†(a).

2. In particular, for a Kalman filter with constant gain L, the output prediction error (6.5)

E [∥y(T )− ŷL(T )∥2] =
∑m

i=1 J
LQR
T (Hi,UL⊺(T )) + tr [R] , (6.9)

where UL⊺(T ) = {L⊺z(1), L⊺z(2), . . . , L⊺z(T )}, i.e., the feedback control policy with

constant gain L⊺, and H⊺
i ∈ Rn is the i-th row of the m×n matrix H for i = 1, . . . ,m.

Remark 6.4. The duality is also true in the continuous-time setting where the estimation

problem is related to a continuous-time LQR. Recent extensions to the nonlinear setting

appears in [Kim et al., 2019] with a comprehensive study in [Kim, 2022]. This duality is

distinct from the maximum likelihood approach which involves an optimal control problem

over the original dynamics instead of the adjoint system [Bensoussan, 2018].

6.3.1 Duality in steady-state regime

Using the duality relationship (6.9), the MSE in prediction (6.5) is expressed as:

Jest
T (L) = tr [XT (L)H⊺H] + tr [R] ,

where XT (L) := ATLP0(A
⊺
L)T +

∑T−1
t=0 A

t
L(Q+LRL⊺)(A⊺

L)t. Define the set of Schur stabilizing

gains

S := {L ∈ Rn×m : ρ(AL) < 1}.
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For any L ∈ S, in the steady-state, the mean-squared prediction error assumes the form,

limT→∞ Jest
T (L) = tr [X∞(L)H⊺H] + tr [R] ,

where X∞(L) := limT→∞XT (L) and coincides with the unique solution X of the discrete

Lyapunov equation X = ALXA
⊺
L + Q + LRL⊺ (existence of unique solution follows from

ρ(AL) < 1). Given the steady-state limit, we formally analyze the following constrained

optimization problem:

min
L∈S

← J(L) := tr
[
X(L)H

⊺H
]
, (6.10)

s.t. X(L) = ALX(L)A
⊺
L +Q+ LRL⊺.

Remark 6.5. Note that the latter problem is technically the dual of the optimal LQR problem

as formulated in [Bu et al., 2019a] by relating A↔ A⊺, −H ↔ B⊺, L↔ K⊺, and H⊺H ↔ Σ.

However, the main difference here is that the product H⊺H may not be positive definite,

for example, due to rank deficiency in H specially when m < n. Thus, in general, the cost

function J(L) is not necessarily coercive in L, which can drastically effect the optimization

landscape. For the same reason, in contrast to the LQR case [Fazel et al., 2018; Bu et al.,

2019a], the gradient dominant property of J(L) is not clear in the filtering setup. In the next

section, we show that such issues can be avoided as long as the pair (A,H) is observable.

Also, the learning problem posed here is distinct from its LQR counterpart (see Table 6.1).

6.3.2 Optimization landscape

The first result is concerned with the behaviour of the objective function at the boundary

of the optimization domain. It is known [Bu et al., 2019b] that the set of Schur stabilizing

gains S is regular open, contractible, and unbounded when m ≥ 2 and the boundary ∂S
coincides with the set {L ∈ Rn×m : ρ(A − LH) = 1}. For simplicity of presentation, we

consider a slightly stronger assumption:

Assumption 6.6. The pair (A,H) is observable, and the noise covariances Q ≻ 0 and

R ≻ 0.
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Table 6.1: Differences between SGD algorithms for optimal LQR and optimal estimation

problems

Problem Parameters Constraints Gradient Oracle

cost value Q and R A and H stability S model biased

LQR [Fazel et al., 2018] known known unknown yes E [J(L+ r∆)∆] yes

∆ ∼ U(Smn)

Estimation unknown unknown known yes E [∇ε(L,Y)] yes

(this work) Y ∼output data

Vanila SGD * * * no E [∇ε(L,Y)] no

Y ∼ data dist.

Lemma 6.7. The function J(.) : S → R is real-analytic and coercive with compact sublevel

sets; i.e.,

L→ ∂S or ∥L∥ → ∞ each implies J(L)→∞,

and Sα := {L ∈ Rn×m : J(L) ≤ α} is compact and contained in S for any finite α > 0.

The next result establishes the gradient dominance property of the objective function.

While this result is known in the LQR setting ([Fazel et al., 2018; Bu et al., 2019a]), the

extension to the estimation setup is not trivial as H⊺H, which takes the role of the covariance

matrix of the initial state in LQR, may not be positive definite (instead, we only assume

(A,H) is observable). This, apparently minor issue, hinders establishing the gradient domi-

nated property globally. However, we recover this property on every sublevel sets of J which

is sufficient for the subsequent convergence analysis.

Lemma 6.8. Consider the constrained optimization problem (6.10).Then,

• The explicit formula for the gradient of J is: ∇J(L) = 2Y(L)
(
−LR + ALX(L)H

⊺
)
,
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where Y(L) = Y is the unique solution of Y = A⊺
LY AL +H⊺H.

• The global minimizer L∗ = arg minL∈S J(L) satisfies L∗ = AX∗H⊺ (R +HX∗H⊺)−1 ,

with X∗ being the unique solution of X∗ = AL∗X∗A⊺
L∗ +Q+ L∗R(L∗)⊺.

• The function J(.) : Sα → R, for any non-empty sublevel set Sα for some α > 0, satisfies

the following inequalities; for all L,L′ ∈ Sα:

c1[J(L)− J(L∗)] + c2∥L− L∗∥2F ≤ ⟨∇J(L),∇J(L)⟩, (6.11a)

c3∥L− L∗∥2F ≤ J(L)− J(L∗), (6.11b)

∥∇J(L)−∇J(L′)∥F ≤ ℓ ∥L− L′∥F , (6.11c)

for positive constants c1, c2, c3 and ℓ that are only a function of α and independent of

L.

Note that the expression for the gradient is consistent with Proposition 3.8 in [Bu et al.,

2019a] after applying the duality relationship explained in Remark 6.5.

Remark 6.9. The proposition above implies that J(.) has the Polyak- Lojasiewicz (PL) prop-

erty (aka gradient dominance) on every Sα; i.e., for any L ∈ Sα we have J(L) − J(L∗) ≤
1

c1(α)
⟨∇J(L),∇J(L)⟩. The inequality (6.11a) is more general as it characterizes the dom-

inance gap in terms of the iterate error from the optimality. This is useful in obtaining

the iterate convergence results in the next section. Also, the Lipschitz bound resembles its

“dual” counterpart in [Bu et al., 2019a, Lemma 7.9], however, it is not implied as a simple

consequence of duality because H⊺H may not be positive definite.

6.4 Algorithm: SGD for Learning the Kalman Gain

In order to emphasize on the estimation time horizon T for various measurement sequences,

we use YT := {y(t)}Tt=0 to denote the measurement time-span. Note that, any choice of

L ∈ S corresponds to a filtering strategy that outputs the following prediction,

ŷL(T ) = HATLm0 +
∑T−1

t=0 HA
T−t−1
L Ly(t).
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We denote the squared-norm of the estimation error for this filtering strategy as,

ε(L,YT ) := ∥eT (L)∥2,

where eT (L) := y(T )− ŷL(T ). We also define the truncated objective function as

JT (L) := E [ε(L,YT )] ,

where the expectation is taken over all possible random measurement sequences, and note

that, at the steady-state limit, we obtain limT→∞ JT (L) = J(L).

The SGD algorithm aims to solve this optimization problem by replacing the gradient,

in the Gradient Descent (GD) update, with an unbiased estimate of the gradient in terms

of samples from the measurement sequence. In particular, with access to an oracle that

produces independent realization of the measurement sequence, say M random independent

measurements sequences {Y iT}Mi=1, the gradient can be approximated as follows: denote the

approximated cost value

ĴT (L) := 1
M

∑M
i=1 ε(L,Y iT ),

then the approximate gradient with batch-size M is ∇ĴT (L) = 1
M

∑M
i=1∇Lε(L,Y iT ). This

forms an unbiased estimate of the gradient of the “truncated objective”, i.e., E
[
∇ĴT (L)

]
=

∇JT (L). Next, for implementation purposes, we compute the gradient estimate explicitly in

terms of the measurement sequence and the filtering policy L.

Lemma 6.10. Given L ∈ S and a sequence of measurements Y = {y(t)}Tt=0, we have,

∇Lε(L,Y) = −2H⊺eT (L)y(T − 1)⊺

+ 2
∑T−1

t=1 −(A⊺
L)tH⊺eT (L)y(T − t−1)⊺ +

∑t
k=1(A

⊺
L)t−kH⊺eT (L)y(T − t−1)⊺L⊺(A⊺

L)k−1H⊺.

Finally, using this approximate gradient, the so-called SGD update proceeds as,

Lk+1 = Lk − ηk∇LĴT (L),

for k ∈ Z, where ηk > 0 is the step-size.
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Remark 6.11. Computing this approximate gradient only requires the knowledge of the sys-

tem matrices A and H, and does not require the noise covariance information Q and R.

Simulation results for the SGD algorithm are provided in the supplementary material.

Although the convergence of the SGD algorithm is expected to follow similar to the

GD algorithm under the gradient dominance condition and Lipschitz property, the analysis

becomes complicated due to the possibility of the iterated gain Lk leaving the sub-level

sets. It is expected that a convergence guarantee would hold under high-probability due to

concentration of the gradient estimate around the true gradient. The complete analysis in

this direction is provided in the subsequent sections.

We first provide sample complexity and convergence guarantees for SGD with a biased

estimation of gradient for locally Lipschitz objective functions and in presence of stability

constraint S. Subsequently, we study the stochastic problem of estimating the gradient

for the estimation problem. Distinct features of our approach as compared with similar

formulations in the literature are highlighted in Table 6.1.

6.4.1 SGD with biased gradient and stability constraint

First, we characterize the “robustness” of a policy at which we aim to estimate the gradient.

This is formalized in the following lemma which is a consequence of [Talebi and Mesbahi,

2022, Lemma IV.1].

Lemma 6.12. Consider any L ∈ S and let Z be the unique solution of Z = ALZA
⊺
L + Λ for

any Λ ≻ 0. Then, L+ ∆ ∈ S for any ∆ ∈ Rn×m satisfying

0 ≤ ∥∆∥F ≤ λ(Λ)
/[

2λ(Z)∥H∥
]
.

Second, we provide a uniform lowerbound for the stepsize of gradient descent for an

approximated direction “close” to the true gradient direction.

Lemma 6.13 (Uniform Lower Bound on Stepsize). Let L0 ∈ Sα for some α ≥ α∗ :=

J(L∗), and choose any finite β ≥ α. Consider any direction E such that ∥E −∇J(L0)∥F ≤
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γ∥∇J(L0)∥F for some γ ∈ [0, 1], then we have J(L0 − ηE) ≤ β for any η satisfying:

0 ≤ η ≤ 1− γ
(γ + 1)2

· 1

ℓ(β)
+

c3(α)

ℓ(α)[α− α∗]

√
β − α
2ℓ(β)

.

Remark 6.14. Note that for the case of exact gradient direction, i.e. when E = ∇J(L0), we

have γ = 0 and choosing β = α implies the known uniform bound of η ≤ 1
ℓ(β)

for feasible

stepsizes as expected. Also, by this choice of β, this guarantees that the next iterate remains

in sublevel set Sα. This lemma generalizes this uniform bound for general directions and

(potentially) larger sublevel set.

The next lemma provides a decay guarantee for one iteration of gradient descent with

an approximate direction which will be used later for convergence of SGD with a biased

gradient estimate.

Proposition 6.15 (Linear Decay in Cost Value). Suppose L0 ∈ Sα for some α > 0 and

a direction E ̸= 0 is given such that ∥E − ∇J(L)∥F ≤ t∥∇J(L)∥F for some γ < 1. Let

η̄0 := (1−γ)/(γ+1)2ℓ(α). Then, L1 := L0 − η̄0E remains in the same sublevel set, i.e., L1 ∈ Sα.
Furthermore, we obtain the following linear decay of the cost value:

J(L1)− J(L∗) ≤ [1− c1(α)η̄(1− γ)/2] [J(L0)− J(L∗)].

The next result is a direct consequence of this proposition. Roughly speaking, it guaran-

tees that SGD algorithm with this biased estimation of gradient obtains a linear convergence

rate outside a small set Cτ around optimality defined as

Cτ := {L ∈ S
∣∣ ∥∇J(L)∥F ≤ s0/τ},

for some τ ∈ (0, 1) and arbitrarily small s0 > 0. First, we assume access to the following

oracle that provides a biased estimation of the true gradient.

Assumption 6.16. Suppose, for some α > 0, we have access to a biased estimation of the

gradient ∇Ĵ(L) such that, there exists constants s, s0 > 0 implying ∥∇Ĵ(L) −∇J(L)∥F ≤
s∥∇J(L)∥F + s0 for all L ∈ Sα \ Cτ .
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Theorem 6.17 (Convergence). Suppose Assumption 6.16 holds with small enough s and s0

such that s ≤ ϵγ and Sα \ Cϵ is non-empty for some ϵ, γ ∈ (0, 1). Then, SGD algorithm

starting from any L0 ∈ Sα \ Cγ(1−ϵ) with fixed stepsize η̄ := (1−γ)
(γ+1)2ℓ(α)

generates a sequence

of policies {Lk} that are stable (i.e. each Lk ∈ Sα) and cost values decay linearly before

entering Cγ(1−ϵ); i.e.,

J(Lk)− J(L∗) ≤ [1− c1(α)η̄(1− γ)/2]k [J(L0)− J(L∗)] ,

for each k ≥ 0 unless Lj ∈ Cγ(1−ϵ) for some j ≤ k.

Proof. It suffices to note that for any L ∈ Sα\Cϵ it follows s∥∇J(L)∥F +s0 < ϵγ+(1−ϵ)γ =

γ. The claim then follows by applying Proposition 6.15 inductively.

6.4.2 The observation model of the estimation problem

Herein, first we show that the estimation error and its differential can be characterized as

a “simple norm” of the concatenated noise (Proposition 6.19). This norm is induced by a

metric that encapsulates the system dynamics which is explained below. Before proceeding

to the results of this section, we assume that both the process and measurement noise are

bounded:

Assumption 6.18. Assume that (almost surely) ∥x0∥, ∥ξ(t)∥ ≤ κξ and ∥ω(t)∥ ≤ κω for all

t. Also, for simplicity, suppose the initial state has zero mean, i.e., m0 = 0n.

For two vectors v,w ∈ R(T+1)n, we define

⟨v,w⟩AL
:= tr [vw⊺A⊺

LH
⊺HAL] ,

where AL :=
(
A0
L A1

L . . . ATL

)
. Also, define ML[E] :=

(
M0[E] M1[E] · · · MT [E]

)

with M0[E] = 0, M1[E] = EH and Mi+1[E] =
∑i

k=0A
i−k
L EHAkL for i = 1, · · · , T − 2.

Proposition 6.19. The estimation error ε(L,YT ) takes the following form

ε(L,YT ) = ∥ηL∥2AL
,
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where ηL := ξ − (I ⊗ L)ω with

ξ ⊺ =
(
ξ(T − 1)⊺ . . . ξ(0)⊺ x(0)⊺

)
,

ω ⊺ =
(
ω(T − 1)⊺ . . . ω(0)⊺ 0⊺

m

)
.

Furthermore, its differential acts on small enough E ∈ Rn×m as,

d ε(·,YT )
∣∣
L
(E) = −2 ⟨ηL, (I ⊗ E)ω ⟩AL

+ tr [XLNL[E]] ,

where XL := ηLηL
⊺ and NL[E] :=ML[E]⊺H⊺HAL +A⊺

LH
⊺HML[E].

Now, we want to bound the error in the estimated gradient ∇ĴT (L) by considering the

concentration error (on length T trajectories) and truncation error separately as follows:

∥∇ĴT (L)−∇J(L)∥ ≤ ∥∇ĴT (L)−∇JT (L)∥+ ∥∇JT (L)−∇J(L)∥,

recalling that JT (L) = E [ε(L,YT )] by definition.

Next, we aim to provide the analysis of concentration error on trajectories of length T

with probability bounds. However, for any pair of real (T×T )-matrices M and N , by Cauchy

Schwartz inequality we obtain that |tr [MN ] | ≤ ∥M∥F∥N∥F ≤
√
T∥M∥∥N∥F . This bound

becomes loose (in terms of dimension T ) as the condition number of N increases1.

Nonetheless, we are able to provide concentration error bounds that “scale well with

respect to the length T” which hinges upon the following idea: from von Neumann Trace

Inequality [Horn and Johnson, 2012, Theorem 8.7.6] one obtaines that

|tr [MN ] | ≤∑T
i=1 σi(M)σi(N) ≤ ∥M∥∥N∥∗, (6.12)

where ∥N∥∗ := tr
[√

N⊺N
]

=
∑

i σi(N) is the nuclear norm with σi(N) denoting the i-th

largest singular value of N . Additionally, the same inequality holds for non-square matrices

of appropriate dimension which is tight in terms of dimension.

1The reason is that the first equality is sharp whenever M is in the “direction” of N , while the second
inequality is sharp whenever condition number of M is close to one.
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Proposition 6.20 (Concentration independent of length T ). ConsiderM independent length

T trajectories {Y iT}Mi=1 and suppose Assumption 6.18 holds. Let∇ĴT (L) := 1
M

∑M
i=1∇ε(L,Y iT ),

then for any s > 0,

P
[
∥∇ĴT (L)−∇JT (L)∥ ≥ s

]
≤ 2n exp

[ −Ms2/2

ν2L + 2νLs/3

]
,

where νL := 4κ2LC
3
L∥H∥2 ∥H∥∗

/
[1−

√
ρ(AL)]3 with κL = κξ + ∥L∥κω.

We can also show how the truncation error decays linearly as T grows, with constants

that are independent of the system dimension n:

Proposition 6.21 (Truncation Error Bound). Under Assumption 6.18, the truncation error

is bounded:

∥∇J(L)−∇JT (L)∥ ≤ γ̄L
√
ρ(AL)

T+1
,

where γ̄L := 10κ4LC
6
L ∥H∥2∥H∥∗

/
[1− ρ(AL)]2.

Remark 6.22. Notice how the trajectory length T determines the bias in the estimated

gradient. However, the concentration error bound is independent of T and only depends on

the noise bounds proportionate to κ4ξ , κ
4
ω and the stability margin of AL proportionate to

C6
L

/
(1−

√
ρ(AL))6.

Finally, by combining the truncation bound in Proposition 6.21 with concentration bounds

in Proposition 6.20 we can provide probabilistic bounds on the “estimated cost” ĴT (L) and

the “estimated gradient” ∇ĴT (L). Its precise statement is deferred to the supplementary

materials (Theorem 6.32).

6.4.3 Sample complexity of SGD for Kalman Gain

Note that the open-loop system may be unstable. Often in learning literature, it is assumed

that the closed-loop system can be contractible ( i.e., the spectral norm ∥AL∥ < 1) which

is quiet convenient for analysis, however, it is not a reasonable system theoretic assump-

tion. Herein, we emphasize that we only require the close-loop system to be Schur stable,
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meaning that ρ(AL) < 1; yet, it is very well possible that the system is not contractible.

Handling systems that are merely stable requires more involved system theoretic tools that

are established in the following lemma.

Lemma 6.23 (Uniform Bounds for Stable Systems). Suppose L ∈ S, then there exit a

constant CL > 0 such that

∥AkL∥ ≤ CL
√
ρ(AL)

k+1
, ∀k ≥ 0.

Furthermore, consider Sα for some α > 0, then there exist constants Dα > 0, Cα > 0 and

ρα ∈ (0, 1) such that ∥L∥ ≤ Dα, CL ≤ Cα, and ρ(AL) ≤ ρα for all L ∈ Sα.

The following result provides sample complexity bounds for this stochastic oracle to

provide a biased estimation of the gradient that satisfies our oracle model of SGD analysis

in Assumption 6.16.

Theorem 6.24. Under the premise of Proposition 6.20, consider Sα for some α > 0 and

choose any s, s0 > 0 and τ ∈ (0, 1). Suppose the trajectory length T ≥ ln
(
γ̄α
√

min(n,m)/s0

)/
ln
(
1/
√
ρα
)

and the batch sizeM ≥ 4ν2α min(n,m) ln(2n/δ)
/

(s s0)
2, where γ̄α := 10(κξ+Dακω)4C6

α ∥H∥2∥H∥∗
and να := 5C3

α∥H∥2∥H∥∗(κξ +Dακω)2
/

[1−√ρα]3. Then, with probability no less than 1−δ,
Assumption 6.16 holds.

Proof. First, note that for any L ∈ Sα by Lemma 6.23 we have that γ̄L ≤ γ̄α and νL ≤ να.

Then, note that the lower bound on T implies that γ̄α
√

min(n,m)
√
ρα

T+1 ≤ s0. The claim

then follows by applying Theorem 6.32 and noting that for any L ̸∈ Cτ the gradient is

lowerbound as ∥∇J(L)∥ > s0/τ .

Remark 6.25. By combining Theorem 6.17 and Theorem 6.24 we claim that in order to

obtain ϵ error on the cost value we need to run O(ln(1/ϵ)) steps of SGD on data trajectories

of length at least O(ln(1/ϵ)). And, this is achieved with probability at least δ if the number

of these trajectories are O(ln(1/δ)
/
ϵ2).
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6.5 Analysis and Extended Results

In this section we present the remaining analysis of the main results of this chapter and

provide extended versions in some cases.

6.5.1 Proof of the duality relationship: Proposition 6.3

1. By pairing the original state dynamics (6.1) and its dual (6.6):

z(t+ 1)⊺x(t+ 1)− z(t)⊺x(t) = z(t+ 1)⊺ξ(t) + u(t+ 1)⊺Hx(t).

Summing this relationship from t = 0 to t = T − 1 yields,

z(T )⊺x(T ) = z(0)⊺x(0) +
T−1∑

t=0

z(t+ 1)⊺ξ(t) + u(t+ 1)⊺Hx(t).

Upon subtracting the estimate a⊺x̂L(T ), using the adjoint relationship

T−1∑

t=0

u(t+ 1)⊺y(t) = a⊺x̂L(T ). (6.13)

and z(T ) = a, lead to

a⊺x(T )−a⊺x̂L(T ) = z(0)⊺x(0) +
∑T−1

t=0 z(t+ 1)⊺ξ(t)− u(t+ 1)⊺w(t).

Squaring both sides and taking the expectation concludes the duality result in (6.8).

2. Consider the adjoint system (6.6) with the linear feedback law u(t) = L⊺z(t). Then,

z(t) = (A⊺
L)T−ta, for t = 0, 1, . . . , T. (6.14)

Therefore, as a function of a, u(t) = L⊺(A⊺
L)T−ta. These relationships are used to identify

the control policy

L†(a) = (u(1), . . . , u(T )) = (L⊺(A⊺
L)T−1a, . . . , L⊺a).

This control policy corresponds to an estimation policy by the adjoint relationship (6.13):

a⊺x̂L(T ) =
T−1∑

t=0

a⊺AT−t−1
L Ly(t), ∀a ∈ Rn.
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This relationship holds for all a ∈ Rn. Therefore,

x̂L(T ) =
T−1∑

t=0

AT−t−1
L Ly(t),

which coincides with the Kalman filter estimate with constant gain L given by the for-

mula (6.4) (with m0 = 0). Therefore, the adjoint relationship (6.13) relates the control

policy with constant gain L⊺ to the Kalman filter with constant gain L. The result (6.9)

follows from the identity

E
[
∥y(T )−ŷL(T )∥2

]
=E

[
∥Hx(T )−Hx̂L(T )∥2+∥w(T )∥2

]

=
∑m

i=1 E [|H⊺
i x(T )−H⊺

i x̂L(T )|2] + tr [R] ,

and the application of the first result (6.9) with a = Hi.

6.5.2 Proofs for the results for the analysis of the optimization landscape

Preliminary lemma

The following lemmas are a direct consequence of duality and useful for our subsequent

analysis.

Lemma 6.26. The set of Schur stabilizing gains S is regular open, contractible, and un-

bounded when m ≥ 2 and the boundary ∂S coincides with the set {L ∈ Rn×m : ρ(A−LH) =

1}. Furthermore, J(.) is real analytic on S.

Proof. Consider the duality described in Remark 6.5. The proof then follows identical to

[Bu et al., 2019a, Lemmas 3.5 and 3.6] by noting that the spectrum of a matrix is identical

to the spectrum of its transpose.

Next, we present the proof of Lemma 6.7 that provides sufficient conditions to recover

the coercive property of J(.) which resembles Lemma 3.7 in [Bu et al., 2019a] (but extended

for the time-varying parameters). The proof is removed on the account of space and appears

in the extended version of this work.
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Remark 6.27. This approach recovers the claimed coercivity also in the control setting with

weaker assumptions. In particular, using this result, one can replace the positive definite

condition on the covariance of the initial condition in [Bu et al., 2019a], i.e., Σ ≻ 0, with

just the controllability of (A,Σ1/2).

Proof of Lemma 6.7

Proof. Consider any L ∈ S and note that the right eigenvectors of A and AL that are

annihilated by H are identical. Thus, by PBH test, observability of (A,H) is equivalent to

observability of (AL, H). Therefore, there exists a positive integer n0 ≤ n such that

H⊺
n0

(L) :=
(
H⊺ A⊺

LH
⊺ . . . (A⊺

L)n0−1H⊺
)

is full-rank, implying that H⊺
n0

(L)Hn0(L) is positive definite. Now, recall that for any such

stabilizing gain L, we compute

J(L) = tr

[
∞∑

t=0

(AL)t(Q+ LRL⊺)(A⊺
L)tH⊺H

]

= tr

[
∞∑

t=0

n0−1∑

k=0

(AL)n0t+k(Q+ LRL⊺)(A⊺
L)n0t+kH⊺H

]

= tr

[
∞∑

t=0

(AL)n0t(Q+ LRL⊺)(A⊺
L)n0tH⊺

n0
(L)Hn0(L)

]

=: tr
[
Xn0(L)H⊺

n0
(L)Hn0(L)

]
,

where we used the cyclic property of trace and the inequality follows because for any PSD

matrices P1, P2 ⪰ 0 we have

tr [P1P2] = tr
[
P

1
2
2 P1P

1
2
2

]
≥ 0. (6.15)

Also, Xn0(L) is well defined because AL is Schur stable if and only if (AL)n0 is. Moreover,

Xn0(L) coincides with the unique solution to the following Lyapunov equation

Xn0(L) = (AL)n0Xn0(L)(A⊺
L)n0 +Q+ LRL⊺.



178

Next, as R ⪰ 0,

J(L) ≥λ(H⊺
n0

(L)Hn0(L))tr [Xn0(L)]

≥λ(H⊺
n0

(L)Hn0(L))tr

[
∞∑

t=0

(AL)n0tQ(A⊺
L)n0t

]

≥λ(H⊺
n0

(L)Hn0(L))λ(Q)
∞∑

t=0

tr
[
(A⊺

L)n0t(AL)n0t
]

≥λ(H⊺
n0

(L)Hn0(L))λ(Q)
∞∑

t=0

ρ(AL)2n0t, (6.16)

where the last inequality follows by the fact that

tr
[
(A⊺

L)n0t(AL)n0t
]

= ∥(AL)n0t∥2F ≥ ∥(AL)n0t∥2op ≥ ρ((AL)n0t)2 = ρ(AL)2n0t,

with ∥ · ∥op denoting the operator norm induced by 2-norm. Now, by Lemma 6.26 and

continuity of the spectral radius, as Lk → ∂S we observe that ρ(ALk
) → 1. But then, the

obtained lowerbound implies that J(Lk)→∞. On the other hand, as Q ≻ 0, R ≻ 0 are both

time-independent, by using a similar technique we also provide the following lowerbound

J(L) ≥tr

[
(Q+ LRL⊺)

∞∑

t=0

(A⊺
L)n0tH⊺

n0
(L)Hn0(L)(AL)n0t

]

≥λ(H⊺
n0

(L)Hn0(L))tr [Q+ LRL⊺]

≥λ(H⊺
n0

(L)Hn0(L))tr [RLL⊺]

≥λ(H⊺
n0

(L)Hn0(L))λ(R)∥L∥2F ,

where ∥ · ∥F denotes the Frobenius norm. Therefore, by equivalency of norms on finite

dimensional spaces, ∥Lk∥ → ∞ implies that J(Lk) → ∞ which concludes that J(.) is

coercive on S. Finally, note that for any L ̸∈ S, by (6.16) we can argue that J(L) = ∞,

therefore the sublevel sets Sα ⊂ S whenever α is finite. The compactness of Sα is then a

direct consequence of the coercive property and continuity of J(.) (Lemma 6.26).
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Derivation of the gradient formula in Lemma 6.8

Next, we aim to compute the gradient of J in a more general format. We do the derivation

for time-varying R and Q with specialization to time-invariant setting at the end. For any

admissible ∆, we have

X∞(L+ ∆)−X∞(L) =
∞∑

t=1

(AL)t (Qt + LRtL
⊺) (⋆)⊺ + (⋆) (Qt + LRtL

⊺) (A⊺
L)t

−
∞∑

t=0

(AL)t (∆RtL
⊺ + LRt∆

⊺) (A⊺
L)t + o(∥∆∥),

where the ⋆ is hiding the following term

t∑

k=1

(AL)t−k∆H(AL)k−1.

Therefore, by linearity and cyclic permutation property of trace, we get that

J(L+ ∆)− J(L) =tr

[
∆H

∞∑

t=1

t∑

k=1

2 (AL)k−1 (Qt + LRtL
⊺) (A⊺

L)tH⊺H (AL)t−k
]

− tr

[
∆

∞∑

t=0

2RtL
⊺ (A⊺

L)tH⊺H (AL)t
]

+ o(∥∆∥).

Finally, by considering the Euclidean metric on real matrices induced by the inner product

⟨Q,P ⟩ = tr [Q⊺P ], we obtain the gradient of J as follows

∇J(L) = −2
∞∑

t=0

(A⊺
L)tH⊺H (AL)t LRt 2

∞∑

t=1

t∑

k=1

(A⊺
L)t−kH⊺H (AL)t (Qt + LRtL

⊺) (A⊺
L)k−1H⊺,

whenever the series are convergent! And, by switching the order of the sums it simplifies to

∇J(L) =− 2
∞∑

t=0

(A⊺
L)tH⊺H (AL)t LRt

+ 2
∞∑

k=1

∞∑

t=k

[
(A⊺

L)t−kH⊺H (AL)t−k
]
AL

[
(AL)k−1 (Qt + LRtL

⊺) (A⊺
L)k−1

]
H⊺

=− 2
∞∑

t=0

(A⊺
L)tH⊺H (AL)t LRt + 2

∞∑

t=0

[
(A⊺

L)tH⊺H (AL)t
]

· AL
[

∞∑

k=0

(AL)k (Qt+k+1 + LRt+k+1L
⊺) (A⊺

L)k
]
H⊺.
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For the case of time-independent Q and R, this reduces to

∇J(L) =− 2Y(L)LR + 2Y(L)AL

[
∞∑

k=0

(AL)k (Q+ LRL⊺) (A⊺
L)k
]
H⊺

=2Y(L)
[
−LR + ALX(L)H

⊺
]
.

where Y(L) = Y is the unique solution of

Y = A⊺
LY AL +H⊺H.

Proof of existence of global minimizer in Lemma 6.8

The domain S is non-empty whenever (A,H) is observable. Thus, by continuity of L→ J(L),

there exists some finite α > 0 such that the sublevel set Sα is non-empty and compact.

Therefore, the minimizer is an interior point and thus must satisfy the first-order optimality

condition ∇J(L∗) = 0. Therefore, by coercivity, it is stabilizing and unique which satisfies

L∗ = AX∗H⊺ (R +HX∗H⊺)−1 ,

with X∗ being the unique solution of

X∗ = AL∗X∗A⊺
L∗ +Q+ L∗R(L∗)⊺. (6.17)

As expected, the global minimizer L∗ is equal to the steady-state Kalman gain, but explicitly

dependent on the noise covariances Q and R.

Proof of gradient dominance property in Lemma 6.8

Note that X = X(L) satisfies

X = ALXA
⊺
L +Q+ LRL⊺. (6.18)

Then, by combining (6.17) and (6.18), and some algebraic manipulation, we recover part of

the gradient information, i.e., (−LR + ALXH
⊺), in the gap of cost matrices by arriving at
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the following identity

X −X∗ − AL∗(X −X∗)A⊺
L∗

=(LR− ALXH⊺)(L− L∗)⊺ + (L− L∗)(RL⊺ −HXA⊺
L)

− (L− L∗)R(L− L∗)⊺ − (L− L∗)HXH⊺(L− L∗)⊺

⪯1

a
(LR− ALXH⊺)(RL⊺ −HXA⊺

L) + a(L− L∗)(L− L∗)⊺

− (L− L∗)(R +HXH⊺)(L− L∗)⊺

(6.19)

where the upperbound is valid for any choice of a > 0. Now, as R ≻ 0, we choose a = λ(R)/2.

As X ⪰ 0, it further upperbounds

X −X∗ − AL∗(X −X∗)A⊺
L∗ ⪯ 2

λ(R)
(−LR + ALXH

⊺)(−RL⊺ +HXA⊺
L)

− λ(R)

2
(L− L∗)(L− L∗)⊺.

Now, let X̃ and X̂ be, respectively, the unique solution of the following Lyapunov equations

X̃ = AL∗X̃A⊺
L∗ + (−LR + ALXH

⊺)(−RL⊺ +HXA⊺
L),

X̂ = AL∗X̂A⊺
L∗ + (L− L∗)(L− L∗)⊺.

Then by comparison, we conclude that

X −X∗ ⪯ 2

λ(R)
X̃ − λ(R)

2
X̂.

Recall that by the fact in (6.15),

J(L) − J(L∗) = tr [(X −X∗)H⊺H] ≤ 2

λ(R)
tr
[
X̃H⊺H

]
− λ(R)

2
tr
[
X̂H⊺H

]
. (6.20)

Let Y ∗ ≻ 0 be the unique solution of

Y ∗ = A⊺
L∗Y ∗AL∗ +H⊺H,
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then, by cyclic permutation property

tr
[
X̃H⊺H

]
= tr [(−LR + ALXH

⊺)(−RL⊺ +HXA⊺
L)Y ∗]

≤ λ(Y ∗)

λ2(Y(L))
tr
[
Y(L)(−LR + ALXH

⊺)(−RL⊺ +HXA⊺
L)Y(L)

]

=
λ(Y ∗)

4λ2(Y(L))
⟨∇J(L),∇J(L)⟩ (6.21)

where the last equality follows by the obtained formula for the gradient ∇J(L). Similarly,

we obtain that

tr
[
X̂H⊺H

]
= tr [(L− L∗)(L− L∗)⊺Y ∗] ≥ λ(Y ∗)∥L− L∗∥2F . (6.22)

Notice that the mapping L → Y(L) is continuous on S ⊃ Sα, and also by observability of

(A,H), Y(L) ≻ 0 for any L ∈ S. To see this, let Hn0(L) ≻ 0 be as defined in Lemma 6.7.

Then,

Y(L) =
∞∑

t=0

(A⊺
L)t(H⊺H)(AL)t

=
∞∑

t=0

n0−1∑

k=0

(A⊺
L)n0t+k(H⊺H)(AL)n0t+k

=
∞∑

t=0

(A⊺
L)n0tH⊺

n0
(L)Hn0(L)(AL)n0t

⪰ H⊺
n0

(L)Hn0(L) ≻ 0.

Now, by Lemma 6.7, Sα is compact and therefore we claim that the following infimum is

attained with some positive value κα:

inf
L∈Sα

λ(Y(L)) =: κα > 0. (6.23)

Finally, the first claimed inequality follows by combining the inequalities (6.20), (6.21) and

(6.22), with the following choice of

c1(α) :=
2λ(R)

λ(Y ∗)
κ2α, and c2(α) :=

λ(Y ∗)λ(R)2

λ(Y ∗)
κ2α.
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For the second claimed inequality, one arrive at the following identity by similar computation

to (6.19):

X −X∗ − AL(X −X∗)A⊺
L =(L∗R− AL∗X∗H⊺)(L− L∗)⊺ + (L− L∗)(RL∗⊺ −HX∗A⊺

L∗)

+ (L− L∗)R(L− L∗)⊺ + (L− L∗)HX∗H⊺(L− L∗)⊺

=(L− L∗)(R +HX∗H⊺)(L− L∗)⊺

where the second equality follows because Y(L) ≻ 0 and thus

L∗R− AL∗X∗H⊺ = −Y −1
(L)∇J(L∗) = 0.

Recall that

J(L)− J(L∗) = tr [(X −X∗)H⊺H] ,

then by the equality in (6.19) and cyclic property of trace we obtain

J(L)− J(L∗) = tr
[
ZY(L)

]
,

where

Z :=(L− L∗)(R +HX∗H⊺)(L− L∗)⊺

⪰λ(R)(L− L∗)(L− L∗)⊺.

Therefore, for any L ∈ Sα, we have

J(L)− J(L∗) ≥ λ(Y(L))tr [Z] ≥ λ(R)κα∥L− L∗∥2F ,

and thus, we complete the proof of first part by the following choice of

c3(α) = λ(R)κα.

Proof of Lipschitz property in Lemma 6.8

Next, we provide the proof of locally Lipschitz property. Notice that the mappings L→ X(L),

L→ Y(L) and L→ AL are all real-analytic on the open set S ⊃ Sα, and thus so is the mapping
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L→ ∇J(L) = 2Y(L)
[
−LR + ALX(L)H

⊺
]
. Also, by Lemma 6.7, Sα is compact and therefore

the mapping L→ ∇J(L) is ℓ-Lipschitz continuous on Sα for some ℓ = ℓ(α) > 0. In the rest

of the proof, we attempt to characterize ℓ(α) in terms of the problem parameters. By direct

computation we obtain

∇J(L1)−∇J(L2) =(2Y(L1) − 2Y(L2))
[
−L1R + AL1X(L1)H

⊺
]

+ 2Y(L2)

([
−L1R + AL1X(L1)H

⊺
]
−
[
−L2R + AL2X(L2)H

⊺
])

=2(Y(L1) − Y(L2))
[
−L1(R +HX(L1)H

⊺) + AX(L1)H
⊺
]

+ 2Y(L2)

[
(L2 − L1)(R +HX(L1)H

⊺) + AL2(X(L1) −X(L2))H
⊺
]
.

Therefore,

∥∇J(L1) − ∇J(L2)∥2F ≤ ℓ21∥Y(L1) − Y(L2)∥2F + ℓ22∥L1 − L2∥2F + ℓ23∥X(L1) − X(L2)∥2F (6.24)

where

ℓ1 = ℓ1(L1) := 2∥ − L1(R +HX(L1)H
⊺) + AX(L1)H

⊺∥op,

ℓ2 = ℓ2(L1, L2) := 2∥Y(L2)∥op ∥R +HX(L1)H
⊺∥op,

ℓ3 = ℓ3(L2) := 2∥Y(L2)∥op ∥AL2∥op ∥H⊺∥op.

On the other hand, by direct computation we obtain

Y(L1) − Y(L2) − A⊺
L1

(Y(L1) − Y(L2))AL1 =(L2 − L1)
⊺H⊺Y(L2)AL2 + A⊺

L2
Y(L2)H(L2 − L1)

+ (L1 − L2)
⊺H⊺Y(L2)H(L1 − L2)

⪯∥L1 − L2∥F ℓ4 I
(6.25)

where

ℓ4 = ℓ4(L1, L2) := 2∥H⊺Y(L2)AL2∥op + ∥H⊺Y(L2)H(L1 − L2)∥op.

Now, consider the mapping L→ Z(L) where Z(L) = Z is the unique solution of the following

Lyapunov equation:

Z = A⊺
LZAL + I,
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which is well-defined and continuous on S ⊃ Sα. Therefore, by comparison, we claim that

∥Y(L1) − Y(L2)∥F ⪯ ∥L1 − L2∥F ℓ4 ∥Z(L1)∥F .

By a similar computation to that of (6.19), we obtain that

X(L1) −X(L2)−AL2(X(L1) −X(L2))A
⊺
L2

=(L1R− AL1X(L1)H
⊺)(L1 − L2)

⊺ + (L1 − L2)(RL
⊺
1 −HX(L1)A

⊺
L1

)

− (L1 − L2)R(L1 − L2)
⊺ − (L1 − L2)HX(L1)H

⊺(L1 − L2)
⊺

⪯∥L1 − L2∥F ℓ5 (Q+ L2RL
⊺
2) (6.26)

where

ℓ5 = ℓ5(L1) := 2∥ − L1R + AL1X(L1)H
⊺∥op/ λ(Q).

Therefore, by comparison, we claim that

∥X(L1) −X(L2)∥F ⪯ ∥L1 − L2∥F ℓ5 ∥X(L2)∥F .

Finally, by compactness of Sα, we claim that the following supremums are attained and thus,

are achieved with some finite positive values:

ℓ̄1(α) := sup
L1,L2∈Sα

ℓ1(L1)ℓ4(L1, L2) ∥Z(L1)∥F ,

ℓ̄2(α) := sup
L1,L2∈Sα

ℓ2(L1, L2),

ℓ̄3(α) := sup
L1,L2∈Sα

ℓ3(L2)ℓ5(L1)∥X(L2)∥F .

Then, the claim follows by combining the bound in (6.24) with (6.25) and (6.26), and the

following choice of

ℓ(α) :=
√
ℓ̄21(α) + ℓ̄22(α) + ℓ̄23(α).

6.5.3 First order methods for optimal filtering

Herein, we show how the optimization landscape allows for finding globally optimum filtering

policy by carefully adopting a gradient descent algorithm despite non-convexity of both the
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cost function and the feasible domain. This intuition serves as a baseline in analyzing the

SGD algorithm where a gradient oracle is inexact and also biased.

Gradient Flow (GF)

For completeness, in the next two sections, we anlayze first-order methods in order to solve

the minimization problem (6.10). In this section, we consider a policy update according to

the the GF dynamics:

[GF] L̇s = −∇J(Ls).

We summarize the convergence result in the following Proposition which is a direct conse-

quence of Lemma 6.8.

Proposition 6.28. Consider any sublevel set Sα for some α > 0. Then, for any initial

policy L0 ∈ Sα, the GF updates converges to optimality at a linear rate of exp(−c1(α)) (in

both the function value and the policy iterate). In particular, we have

J(Ls)− J(L∗) ≤ (α− J(L∗)) exp(−c1(α)s),

and

∥Ls − L∗∥2F ≤
α− J(L∗)

c3(α)
exp(−c1(α)s).

Proof. Consider a Lyapunov candidate function V (L) := J(L) − J(L∗). Under the GF

dynamics

V̇ (Ls) = −⟨∇J(Ls),∇J(Ls)⟩ ≤ 0.

Therefore, Ls ∈ Sα for all s > 0. But then, by Lemma 6.8, we can also show that

V̇ (Ls) ≤ −c1(α)V (Ls)− c2(α)∥Ls − L∗∥2F , for s > 0.

By recalling that c1(α) > 0 is a positive constant independent of L, we conclude the following

exponential stability of the GF:

V (Ls) ≤ V (L0) exp(−c1(α)s),
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for any L0 ∈ Sα which, in turn, guarantees convergence of J(Ls)→ J(L∗) at the linear rate

of exp(−c1(α)). Finally, the linear convergence of the policy iterates follows directly from

the second bound in Lemma 6.8:

∥Ls − L∗∥2F ≤ 1
c3(α)

V (Ls) ≤ V (L0)
c3(α)

exp(−c1(α)s).

The proof concludes by noting that V (L0) ≤ α−J(L∗) for any such initial value L0 ∈ Sα.

Gradient Descent (GD)

Here, we consider the GD policy update:

[GD] Lk+1 = Lk − ηk∇J(Lk),

for k ∈ Z and a positive stepsize ηk. Given the convergence result for the GF, establishing

convergence for GD relies on carefully choosing the stepsize ηk, and bounding the rate of

change of ∇J(L)—at least on each sublevel set. This is achieved by the Lipschitz bound for

∇J(L) on any sublevel set.

In what follows, we establish linear convergence of the GD update. Our convergence

result only depends on the value of α for the initial sublevel set Sα that contains L0. Note

that our proof technique is distinct from those in [Bu et al., 2019a] and [Mohammadi et al.,

2021b]; nonetheless, it involves a similar argument using the gradient dominance property

of J .

Theorem 6.29. Consider any sublevel set Sα for some α > 0. Then, for any initial policy

L0 ∈ Sα, the GD updates with any fixed stepsize ηk = η ∈ (0, 1/ℓ(α)] converges to optimality

at a linear rate of 1 − ηc1(α)/2 (in both the function value and the policy iterate). In

particular, we have

J(Lk)− J(L∗) ≤ [α− J(L∗)](1− ηc1(α)/2)k,

and

∥Lk − L∗∥2F ≤
[
α− J(L∗)

c3(α)

]
(1− ηc1(α)/2)k,
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with c1(α) and c3(α) as defined in Lemma 6.8.

Proof. First, we argue that the GD update with such a step size does not leave the initial

sublevel set Sα for any initial L0 ∈ Sα. In this direction, consider L(η) = L0 − η∇J(L0)

for η ≥ 0 where L0 ̸= L∗. Then, by compactness of Sα and continuity of the mapping

η → J(L(η)) on S ⊃ Sα, the following supremum is attained with a positive value η̄0:

η̄0 := sup{η : J(L(ζ)) ≤ α, ∀ζ ∈ [0, η]},

where positivity of η̄0 is a direct consequence of the strict decay of J(L(η)) for sufficiently

small η as ∇J(L0) ̸= 0. This implies that L(η) ∈ Sα ⊂ S for all η ∈ [0, η̄0] and J(L(η̄0)) = α.

Next, by the Fundamental Theorem of Calculus and smoothness of J(·) (Lemma 6.26), for

any η ∈ [0, η̄0] we have that,

J(L(η))− J(L0)− ⟨∇J(L0), L(η)− L0⟩ =

∫ 1

0

⟨∇J(L(ηs))−∇J(L0), L(η)− L0⟩ds

≤ ∥L(η)− L0∥F
∫ 1

0

∥∇J(L(ηs))−∇J(L0)∥Fds

≤ ℓ(α)∥L(η)− L0∥F
∫ 1

0

∥L(ηs)− L0∥Fds

=
1

2
ℓ(α)η∥L(η)− L0∥F∥∇J(L0)∥F ,

where ∥ · ∥F denotes the Frobenius norm, the first inequality is a consequence of Cauchy-

Schwartz, and the second one is due to (6.11c) and the fact that L(ηs) remains in Sα for all

s ∈ [0, 1].2 By the definition of L(η), it now follows that,

J(L(η))− J(L0) ≤ η∥∇J(L0)∥2F
(
ℓ(α)η

2
− 1

)
. (6.27)

This implies J(L(η)) ≤ J(L0) for all η ≤ 2/ℓ(α), and thus concluding that η̄0 ≥ 2/ℓ(α).

This justifies that L(η) ∈ Sα for all η ∈ [0, 2/ℓ(α)]. Next, if we consider the GD update with

2Note that a direct application of Descent Lemma [Beck, 2017, Lemma 5.7] may not be justified as
one has to argue about the uniform bound for the Hessian of J over the non-convex set Sα where J is
ℓ(α)-Lipschitz only on Sα. Also see the proof of [Mohammadi et al., 2021b, Theorem 2].
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any fixed stepsize η ∈ (0, 1/ℓ(α)] and apply the bound in (6.27) and the gradient dominance

property in Lemma 6.8, we obtain

J(L1)− J(L0) ≤ ηc1(
ℓ(α)η
2
− 1)[J(L0)− J(L∗)],

which by subtracting J(L∗) results in

J(L1)− J(L∗) ≤
(
1− ηc1

2

)
[J(L0)− J(L∗)],

as ηc1(ℓ(α)η/2 − 1) ≤ −ηc1/2 for all η ∈ (0, 1/ℓ(α)]. By induction, and the fact that both

c1(α) and the choice of η only depends on the value of α, we conclude the convergence in

the function value at a linear rate of 1− (ηc1/2) and the constant coefficient of α− J(L∗) ≥
J(L0) − J(L∗). To complete the proof, the linear convergence of the policy iterates follows

directly from the second bound in Lemma 6.8.

6.5.4 Proofs for the analysis of the constrained SGD algorithm

lemma 6.10: Derivation of stochastic gradient formula

Proof. For small enough ∆ ∈ Rn×m,

ε(L+ ∆,Y)− ε(L,Y) = ∥eT (L+ ∆)∥2 − ∥eT (L)∥2

= 2tr [(eT (L+ ∆)− eT (L))e⊺T (L)] + o(∥∆∥)).

The difference

eT (L+ ∆)− eT (L) = E1(∆) + E2(∆) + o(∥∆∥),

with the following terms that are linear in ∆:

E1(∆) := −∑T−1
t=0 H(AL)t∆y(T − t− 1),

E2(∆) :=
∑T−1

t=1

∑t
k=1H(AL)t−k∆H(AL)k−1Ly(T − t− 1).
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Therefore, combining the two identities, the definition of gradient under the inner product

⟨A,B⟩ := tr [AB⊺], and ignoring the higher order terms in ∆ yields,

⟨∇Lε(L, y),∆⟩ = 2tr [(E1(∆) + E2(∆))e⊺T (L)] ,

which by linearity and cyclic permutation property of trace reduces to:

⟨∇Lε(L, y),∆⟩ = −2tr

[
∆

(
T−1∑

t=0

y(T − t− 1)e⊺T (L)H(AL)t

)]

+ 2tr

[
∆

(
T−1∑

t=1

t∑

k=1

H(AL)k−1Ly(T − t− 1)e⊺T (L)H(AL)t−k

)]
.

This holds for all admissible ∆, concluding the formula for the gradient.

Proof of Lemma 6.12: Robustness of the policy with respect to perturbation

Proof. Recall the stability certificate sK as proposed in [Talebi and Mesbahi, 2022, Lemma

IV.1] for a choice of constant mapping Q : K → Λ ≻ 0 and dual problem parameters

as discussed in Remark 6.5. Then, we arrive at sK = λ(Λ)/(2λ(Z)∥H⊺∆⊺∥), for which

ρ (A⊺ +H⊺(L⊺ + η∆⊺)) < 1 for any η ∈ [0, sK ]. But, the spectrum of a square matrix and

its transpose are identical, thus L + η∆ ∈ S for any such η. The claim then follows by

noting that the operator norm of a matrix and its transpose are identical, and the resulting

lowerbound as follows sK ≥ λ(Λ)/(2λ(Z)∥H∥∥∆∥F ).

6.5.5 Proof of Lemma 6.13: Uniform lower-bound on stepsize

Proof. Without loss of generality, suppose L0 ̸= L∗ and E ̸= 0, and let L(η) := L0 − ηE.

By compactness of Sβ and continuity of the mapping η → J(L(η)) on S ⊃ Sβ, the following

supremum is attained by ηβ:

ηβ := sup{η : J(L(ζ)) ≤ β, ∀ζ ∈ [0, η]}. (6.28)

Note that ηβ is strictly positive for β > α because L0 ∈ Sα ⊂ Sβ and J(·) is coercive

(Lemma 6.7) and its domain is open (Lemma 6.12). This implies that L(η) ∈ Sβ ⊂ S for all

η ∈ [0, ηβ] and J(L(ηβ)) = β.
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Next, we want to show that ηβ is uniformly lower bounded with high probability. By the

Fundamental Theorem of Calculus, for any η ∈ [0, ηβ] we have

J(L(η))− J(L0)− ⟨∇J(L0), L(η)− L0⟩ =

∫ 1

0

⟨∇J(L(ηs))−∇J(L0), L(η)− L0⟩ds

≤ ∥L(η)− L0∥F
∫ 1

0

∥∇J(L(ηs))−∇J(L0)∥Fds

≤ ℓ(β)∥L(η)− L0∥F
∫ 1

0

∥L(ηs)− L0∥Fds

=
1

2
ℓ(β)η2∥E∥2F , (6.29)

where the first inequality is a consequence of Cauchy-Schwartz, and the second one is due

to (6.11c) and the fact that L(ηs) remains in Sβ for all s ∈ [0, 1] by definition of ηβ. Note

that the assumption implies ∥E∥F ≤ (γ + 1)∥∇J(L0)∥F . Thus, (6.29) implies that

J(L(η)) ≤J(L0)− η⟨∇J(L0), E⟩+
1

2
ℓ(β)η2∥E∥2F

≤J(L0)− η⟨∇J(L0), E −∇J(L0)⟩ − η∥∇J(L0)∥2F +
1

2
ℓ(β)η2∥E∥2F

≤J(L0) + ∥∇J(L0)∥2F
[

1

2
(γ + 1)2ℓ(β)η2 + (γ − 1)η

]
.

(6.30)

Therefore, for η to be a feasible point in the supremum in (6.28), it suffices to satisfy:

1

2
∥∇J(L0)∥2F

[
(γ + 1)2ℓ(β)η2 + 2(γ − 1)η

]
≤ β − α,

or equivalently,
[
(γ + 1)ℓ(β)η +

γ − 1

γ + 1

]2
≤
(
γ − 1

γ + 1

)2

+
2ℓ(β)[β − α]

∥∇J(L0)∥2F
.

But then it suffices to have

(γ + 1)ℓ(β)η +
γ − 1

γ + 1
≤
√

2ℓ(β)[β − α]

∥∇J(L0)∥F
.

Finally, note that by Lemma 6.8 and (6.11c) we have

∥∇J(L0)∥F ≤
ℓ(α)

c3(α)
[J(L0)− J(L∗)] ≤ ℓ(α)

c3(α)
[α− α∗]. (6.31)

Using this uniform bound of gradient on sublevel set Sα and noting that γ ∈ [0, 1], we can

obtain the sufficient condition for η to be feasible. This completes the proof.
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6.5.6 Proof of Proposition 6.15: Linear decay in cost value

Proof. Suppose L0 ̸= L∗ and let L(η) := L0 − ηE. Note that E may not be necessarily in

the direction of decay in J(L), however, we can argue the following:

Choose β = α in Lemma 6.13 and note that ηβ as defined in (6.28) will be lower bounded

as ηβ ≥ η̄0, and thus η̄0 is feasible. Recall that L(η) ∈ Sβ ⊂ S for all η ∈ [0, ηβ]. Also, for

any η ∈ [0, η̄0] and γ ∈ [0, 1), from (6.30) we obtain that:

J(L(η))− J(L0) ≤ ∥∇J(L0)∥2F
[

1

2
(γ + 1)2ℓ(α)η2 + (γ − 1)η

]

≤ c1(α)[J(L0)− J(L∗)]

[
1

2
(γ + 1)2ℓ(α)η2 + (γ − 1)η

]

where, as γ < 1, the last inequality follows by (6.11a) for any η ≤ min{2η̄0, ηβ}. By the

choice of η̄0, then we obtain that

J(L(η̄0))− J(L0) ≤ −c1(α)

[
(γ − 1)2

2(γ + 1)2ℓ(α)

]
[J(L0)− J(L∗)]

This implies that

J(L(η̄0))− J(L∗) ≤
(

1− c1(α)

[
(γ − 1)2

2(γ + 1)2ℓ(α)

])
[J(L0)− J(L∗)].

6.5.7 Proofs of the result for observation model and sample complexity

Preliminary lemmas and their proofs

First, we provide the proof for the complete version of Lemma 6.23:

Lemma 6.23’ (Uniform Bounds for Stable Systems). Suppose L ∈ S, then there exists a

constant CL > 0 such that

∥AkL∥ ≤ CL

(√
ρ(AL)

)k+1

, ∀k ≥ 0,
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whenever ρ(AL) > 0, and otherwise
√
ρ(AL) is replaced with any arbitrarily small r ∈ (0, 1).

Additionally,

∞∑

i=0

∥AiL∥ ≤
CL

1−
√
ρ(AL)

∞∑

i=0

∥Mi[E]∥ ≤ 1 + 2C2
Lρ(AL)3/2

[1−
√
ρ(AL)]2

∥EH∥

Furthermore, consider Sα for some α > 0, then there exist constants Dα > 0, Cα > 0 and

ρα ∈ (0, 1) such that ∥L∥ ≤ Dα, CL ≤ Cα and ρ(AL) ≤ ρα, ∀L ∈ Sα.

Proof of Lemma 6.23. Recall the Cauchy Integral formula for matrix functions [Higham,

2008, Theorem 1.12]: for any matrix M ∈ Cn×n,

f(M) =
1

2πi

∮

Γ

f(z)(zI −M)−1dz,

whenever f is real analytic on and inside a closed contour Γ that encloses spectrum of

M . Note that L ∈ S implying that ρ(AL) < 1. Now, fix some r ∈ (ρ(AL), 1) and define

Γ(θ) = reiθ with θ ranging on [0, 2π]. Therefore, Cauchy Integral formula applies to f(z) = zk

for any positive integer k and the contour Γ defined above. So, for matrix AL, we obtain

AkL =
1

2πi

∮

Γ

zk(zI − AL)−1dz =
1

2πi

∫ 2π

0

rkeikθ(reiθI − A)−1 r deiθ,

implying that

∥AkL∥ ≤
rk+1

2π

∫ 2π

0

∥(reiθI − AL)−1∥dθ ≤ rk+1 max
θ∈[0,2π]

∥(reiθI − AL)−1∥.

Finally, the first claim follows by choosing r =
√
ρ(AL) (whenever ρ(AL) > 0, otherwise

r ∈ (0, 1) can be chosen arbitrarily small) and defining

CL := max
θ∈[0,2π]

∥(
√
ρ(AL)eiθI − AL)−1∥

which is attained and bounded.

Next, by applying the first claim, we have

T∑

i=0

∥AiL∥ ≤ CL
1−

√
ρ(AL)

T

1−
√
ρ(AL)

,
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implying the second bound. For the third claim, note that for i = 1, 2, · · · we obtain

∥Mi+1[E]∥ ≤
i∑

k=0

∥Ai−kL ∥∥AkL∥∥EH∥ ≤ ∥EH∥C2
L

i∑

k=0

[√
ρ(AL)

](i−k+1)+(k+1)

≤ ∥EH∥C2
L

√
ρ(AL)

[
(i+ 1) · ρ(AL)(i+1)/2

]
. (6.32)

But, then by recalling that M0[E] = 0 and ∥M1[E]∥ = ∥EH∥ we have

∞∑

i=0

∥Mi[E]∥ ≤ ∥EH∥+ ∥EH∥
[

2C2
Lρ(AL)3/2

[1−
√
ρ(AL)]2

]

where we used the following convergent sum for any ρ ∈ (0, 1):

∞∑

i=1

(i+ 1) · ρi+1 =
(2− ρ)ρ2

(1− ρ)2
≤ 2ρ2

(1− ρ)2
.

This implies the third bound.

The final claim follows directly from compactness of sublevel set Sα (Lemma 6.7) and

continuity of the mappings (L, θ) 7→ (ρ(AL), θ) 7→ ∥(
√
ρ(AL)eiθI − AL)−1∥ on Sα × [0, 2π]

whenever ρ(AL) > 0 (and otherwise considering the mapping (L, θ) 7→ ∥(reiθI − AL)−1∥ for

arbitrarily small and fixed r ∈ (0, 1)).

As mentioned in Section 6.4.2, a key idea behind these error bounds that scale well with

respect to the length T is the following consequence of von Neumann Trace Inequality [Horn

and Johnson, 2012, Theorem 8.7.6]:

|tr [MN ] | ≤∑T
i=1 σi(M)σi(N) ≤ ∥M∥∥N∥∗,

with ∥ · ∥∗ denoting the nuclear norm. Additionally, as a direct consequence of Courant-

Fischer Theorem, one can also show that nuclear norm is sub-multiplicative. More precisely,

∥AB∥∗ ≤ ∥A∥ ∥B∥∗ ≤ ∥A∥∗∥B∥∗.

Next, we require the following lemma to bound these errors.
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Lemma 6.30. For any L ∈ Sα, we have

∥A⊺
LH

⊺HAL∥∗ ≤
C2
L∥H⊺H∥∗

1− ρ(AL)
,

∥NL[E]∥∗ ≤
[
2CL + 4C3

Lρ(AL)3/2
]
∥H∥ ∥H⊺H∥∗

[1− ρ(AL)]2
∥E∥.

Proof of Lemma 6.30. For the first claim, note that A⊺
LH

⊺HAL is positive semi-definite,

so

∥A⊺
LH

⊺HAL∥∗ = tr [A⊺
LH

⊺HAL]

≤ tr [H⊺H] ∥ALA⊺
L∥

≤ ∥H⊺H∥∗
∥∥∥∥∥

T∑

i=0

AiL(A⊺
L)i

∥∥∥∥∥

≤ ∥H⊺H∥∗
T∑

i=0

∥AiL∥2

≤ ∥H⊺H∥∗
C2
L

1− ρ(AL)

where the last inequality follows by Lemma 6.23. Next, we have

∥ML[E]∥ = ∥ML[E]ML[E]⊺∥1/2

≤
[

T∑

i=0

∥Mi[E]∥2
]1/2

≤ ∥EH∥+ ∥EH∥C2
L

√
ρ(AL)

[
T∑

i=0

(i+ 1)2 · ρ(AL)(i+1)

]1/2

≤ ∥EH∥+ ∥EH∥C2
L

√
ρ(AL)

2ρ(AL)

[1− ρ(AL)]3/2

≤ ∥EH∥
[

1 + 2C2
Lρ(AL)3/2

[1− ρ(AL)]3/2

]

where the second inequality follows by (6.32) and the third one by the following convergent

sum for any ρ ∈ (0, 1):

∞∑

i=1

(i+ 1)2 · ρi+1 =
ρ2(ρ2 − 3ρ+ 4)

(1− ρ)3
≤ 4ρ2

(1− ρ)3
.
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Also, by the properties of nuclear norm

∥H⊺HAL∥∗ = tr

[√
H⊺HALA⊺

LH
⊺H

]

≤ ∥ALA⊺
L∥1/2∥H⊺H∥∗

≤
[

∞∑

i=0

∥AiL∥2
]1/2
∥H⊺H∥∗

≤
[

C2
L

1− ρ(AL)

]1/2
∥H⊺H∥∗,

where the last inequality follows by Lemma 6.23. Finally, notice that

∥NL[E]∥∗ ≤ 2∥A⊺
LH

⊺HML[E]∥∗
≤ 2∥ML[E]∥∥H⊺HAL∥∗

and thus combining the last three bounds implies the second claim. This completes the

proof.

The next tool we will be using is the following famous bound on random matrices which

is a variant of Bernstein inequality:

Lemma 6.31 (Matrix Bernstein Inequality [Tropp, 2015, Corollary 6.2.1]). Let Z be a d1×d2
random matrices such that E [Z] = Z̄ and ∥Z∥ ≤ K almost surely. Consider M independent

copy of Z as Z1, · · · , ZM , then for every t ≥ 0, we have

P
[∥∥∥∥

1

M

∑
i Zi − Z̄

∥∥∥∥ ≥ t

]
≤ (d1 + d2) exp

{ −Mt2/2

σ2 + 2Kt/3

}

where σ2 = max{∥E [ZZ⊺] ∥, ∥E [Z⊺Z] ∥} is the per-sample second moment. This bound can

be expressed as the mixture of sub-gaussian and sub-exponential tail as (d1+d2) exp
{
−cmin{ t2

σ2 ,
t

2K
}
}

for some c.

We are now well-equipped to provide the main proofs.
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Proof of Proposition 6.19

Proof. Recall that

ε(L,YT ) = ∥Hx(T )−Hx̂(T )∥2 =
m∑

i=1

|H⊺
i x(T )−H⊺

i x̂(T )|2

where H⊺
i is the i-th row of H. Also, by duality, if z(t) = (A⊺

L)T−tHi is the adjoint dynamics’

closed-loop trajectory with control signal u(t) = L⊺z(t) then

H⊺
i x(T )−H⊺

i x̂(T ) = z ⊺
i ξ − u ⊺ω

where

z ⊺
i =

(
z(T )⊺ z(T − 1)⊺ . . . z(1)⊺ z(0)⊺

)
,

u ⊺ =
(
u(T )⊺ u(T − 1)⊺ . . . u(1)⊺ 0⊺

m

)
.

But u = (I ⊗ L⊺)z i and then z i = A⊺
LHi. Therefore,

ε(L,YT ) =
m∑

i=1

|H⊺
i x(T )−H⊺

i x̂(T )|2

=
m∑

i=1

tr [ξ ξ ⊺z iz
⊺
i ]− tr [(ξ ω ⊺(I ⊗ L⊺) + (I ⊗ L)ω ξ ⊺) z iz

⊺
i ]

+ tr [ω ω ⊺(I ⊗ L⊺)z iz
⊺
i (I ⊗ L)]

Then, by using the fact that
∑m

i=1HiH
⊺
i = H⊺H, we obtain that

ε(L,YT ) = tr [XLA⊺
LH

⊺HAL] .

Thus, we can rewrite the estimation error as

ε(L,YT ) = ⟨ξ , ξ ⟩AL
+ ⟨(I ⊗ L)ω , (I ⊗ L)ω ⟩AL

− 2 ⟨ξ , (I ⊗ L)ω ⟩AL
= ∥ηL∥2AL

Next, we can compute that for small enough E

AL+E −AL =ML[E] + o(∥E∥).



198

This implies that

d(A⊺
LH

⊺HAL)
∣∣
L
[E] =ML[E]⊺H⊺HAL +A⊺

LH
⊺HML[E]

On the other hand,

XL+E −XL = (I ⊗ E)ω ω ⊺(I ⊗ L⊺) + (I ⊗ L)ω ω ⊺(I ⊗ E⊺)− ξ ω ⊺(I ⊗ E⊺) + (I ⊗ E)ω ξ ⊺

+ o(∥E∥).

Therefore, the second claim follows by the chain rule.

Proof of the Proposition 6.20

We provide the proof for a detailed version of Proposition 6.20:

Proposition 6.20’ (Concentration independent of length T ). Consider length T trajectories

{Y i[t0,t0+T ]}Mi=1 and let ĴT (L) := 1
M

∑M
i=1 ε(L,Y iT ). Then, under Assumption 6.18, for any

s > 0

P
[
|ĴT (L)− JT (L)| ≤ s

]
≥ 1− 2n exp

[ −Ms2/2

µ2
L + 2µLs/3

]
,

P
[
∥∇ĴT (L)−∇JT (L)∥ ≤ s

]
≥ 1− 2n exp

[ −Ms2/2

ν2L + 2νLs/3

]

where κL = κξ + ∥L∥κω and

µL :=
κ2LC

2
L

[1−
√
ρ(AL)]2

∥H⊺H∥∗

νL :=
2κLκωC

2
L +

[
CL + 2C3

Lρ(AL)3/2
]
∥H∥κ2L

[1−
√
ρ(AL)]3

∥H⊺H∥∗.

Proof of Proposition 6.20. Note that

E [ξ ξ ⊺] =


I ⊗Q 0

0 P0


 =: Q,

E [ω ω ⊺] =


I ⊗R 0

0 0m


 =: R,
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and E [ξ ω ⊺] = 0. Assume m0 = 0 and recall that ⟨∇ε(L,YT ), E⟩ = d ε(·,YT )
∣∣
L
(E) thus,

using Proposition 6.19, we can rewrite the JT (L) and its gradient as

JT (L) = E [ε(L,YT )] = E
[
∥ηL∥2AL

]
= tr [E [XL]A⊺

LH
⊺HAL]

where E [XL] = Q+ (I ⊗ L)R(I ⊗ L⊺). Therefore, by definition of ĴT (L) we obtain

ĴT (L) = tr [ZLA⊺
LH

⊺HAL]

with ZL = 1
M

∑M
i=1XL(Y i) which can be expanded as

ZL = Z1 + (I ⊗ L)Z2(I ⊗ L⊺)−Z3(I ⊗ L⊺)− (I ⊗ L)Z⊺
3 ,

where

Z1 =
1

M

M∑

i=1

ξ iξ
⊺
i , Z2 =

1

M

M∑

i=1

ω iω
⊺
i , Z3 =

1

M

M∑

i=1

ξiω
⊺
i ,

and E [ZL] = Q+ (I ⊗ L)R(I ⊗ L⊺). Therefore,

ĴT (L)− JT (L) = tr [(ZL − E [ZL])A⊺
LH

⊺HAL] .

Thus, by cyclic permutation property of trace and (6.12) we obtain

|ĴT (L)− JT (L)| ≤∥AL (ZL − E [ZL])A⊺
L∥ ∥H⊺H∥∗. (6.33)

Next, we consider the symmetric random matrix AL (ZL − E [ZL])A⊺
L. Note that ∥ξ(t) −

Lω(t)∥ ≤ κL almost surely and thus

∥ALXLA⊺
L∥ = ∥ALηL∥2 ≤ κ2L

[
∞∑

i=0

∥AiL∥
]2
≤ µL/∥H⊺H∥∗.

It then follows that

∥∥E
[
(ALXLA⊺

L)2
]∥∥ ≤ E

[
∥ALXLA⊺

L∥2
]
≤ µ2

L/∥H⊺H∥2∗.

Therefore, by Lemma 6.31 we obtain that

P [∥AL (ZL − E [ZL])A⊺
L∥ ≥ t] ≤ 2n exp

[ −M∥H⊺H∥2∗t2/2
µ2
L + 2µL∥H⊺H∥∗t/3

]
.
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Substituting t with t/∥H⊺H∥∗ together with (6.33) implies the first claim.

Similarly, we can compute that

⟨∇JT (L), E⟩ =⟨E [∇ε(L,YT )] , E⟩

=2tr [(I ⊗ L)R(I ⊗ E⊺)A⊺
LH

⊺HAL] + tr [(Q+ (I ⊗ L)R(I ⊗ L⊺))NL[E]] ,

and thus

⟨∇ĴT (L)−∇JT (L), E⟩ =− 2tr [Z3(I ⊗ E⊺)A⊺
LH

⊺HAL]

+ 2tr [(I ⊗ L)(Z2 −R)(I ⊗ E⊺)A⊺
LH

⊺HAL]

+ tr [(ZL − E [ZL])NL[E]] .

Thus, by cyclic permutation property of trace and (6.12) we obtain that

|⟨∇ĴT (L)−∇JT (L), E⟩| ≤ ∥ 1

M

M∑

i=1

SL(E,Y iT )− E
[
SL(E,Y iT )

]
∥∥H⊺H∥∗ (6.34)

where SL(E,Y) is the symmetric part of the following random matrix

−2ALξ ω ⊺(I ⊗ E⊺)A⊺
L + 2AL(I ⊗ L)ω ω ⊺(I ⊗ E⊺)A⊺

L + 2ALXLML[E]⊺.

Next, we provide the following almost sure bounds for each term: first,

∥ALZ3(I ⊗ E⊺)A⊺
L∥ ≤ ∥ALξ ∥ ∥AL(I ⊗ E)ω ∥

≤ κξ

[
T∑

i=0

∥AiL∥
]
κω∥E∥

[
T∑

i=0

∥AiL∥
]

≤ κξκω
C2
L

[1−
√
ρ(AL)]2

∥E∥

where the last equality follows by Lemma 6.23; second, similarly

∥AL(I ⊗ L)ω ω ⊺(I ⊗ E⊺)A⊺
L∥ ≤ ∥AL(I ⊗ L)ω ∥ ∥AL(I ⊗ E)ω ∥

≤ κ2ω∥L∥ ∥E∥
[

T∑

i=0

∥AiL∥
]2

≤ κ2ω
C2
L

[1−
√
ρ(AL)]2

∥L∥ ∥E∥;
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and finally

∥ALXLML[E]⊺∥ ≤∥ALηL∥ ∥ML[E]ηL∥

≤κ2L

[
T∑

i=0

∥AiL∥
] [

T∑

i=0

∥Mi[E]∥
]

≤κ2L

[
CL + 2C3

Lρ(AL)3/2

[1−
√
ρ(AL)]3

]
∥EH∥

where the last inequality follows by Lemma 6.23. Now, by combining the last three bounds

we can claim that almost surely

∥SL(E,Y)∥ ≤ νL
∥H⊺H∥∗

∥E∥.

This also implies that

∥E
[
SL(E,Y)2

]
∥ ≤ E

[
∥SL(E,Y)∥2

]
≤ ν2L
∥H⊺H∥2∗

∥E∥2.

Therefore, by Lemma 6.31 we obtain that

P

[
∥ 1

M

M∑

i=1

SL(E,Y iT )− E
[
SL(E,Y iT )

]
∥ ≥ t

]
≤ 2n exp

[ −M∥H⊺H∥2∗t2/2
ν2L∥E∥2 + 2νL∥H⊺H∥∗∥E∥t/3

]

Thus, by substituting t with t∥E∥
/
∥H⊺H∥∗ and applying this bound to (6.34) we obtain

that

P
[
|⟨∇ĴT (L)−∇JT (L), E⟩| ≤ t∥E∥

]
≥ 1− 2n exp

[ −Mt2/2

ν2L + 2νLt/3

]

Finally, choosing E = ∇ĴT (L)−∇JT (L) proves the second claim.

Proof of the Proposition 6.21

We provide the proof for a detailed version of Proposition 6.21:

Proposition 6.21’ (Truncation Error Bound). Suppose m0 = 0, then under Assumption 6.18

we have

|J(L)− JT (L)| ≤ ξ̄L
ρ(AL)T+1

1− ρ(AL)
,



202

and

∥∇J(L)−∇JT (L)∥ ≤ γ̄L

√
ρ(AL)

T+1

[1− ρ(AL)]2

where

ξ̄L :=
[
κ2ξ + (κ2ξ + κ2ω ∥L∥2)C2

L

]
∥H⊺H∥∗C2

L,

γ̄L :=2
[
κ2ξ + C2

L(κ2ξ + κ2ω∥L∥2)
]
C2
L∥H∥ ∥H⊺H∥∗

+ 2κ2ω(κ2ξ + κ2ω∥L∥2)∥L∥ ∥H∥∥H⊺H∥∗
(
CL + 2C3

Lρ(AL)3/2
)
C3
L

√
ρ(AL)

T+1
.

Proof of Proposition 6.21. For the purpose of this proof, we denote the same matrices

by AL,T and ML,T [E] in order to emphasize on length T . Recall that

JT (L) = E [ε(L,Y)] = tr
[
E [XL]A⊺

L,TH
⊺HAL,T

]
,

where E [XL] = Q+ (I ⊗ L)R(I ⊗ L⊺), which implies

JT (L) = tr
[
[I ⊗ (Q+ LRL⊺)]A⊺

L,T−1H
⊺HAL,T−1

]
+ tr

[
P0(A

⊺
L)TH⊺HATL

]
,

On the other hand,

J(L) = lim
t→∞

tr
[
[I ⊗ (Q+ LRL⊺)]A⊺

L,tH
⊺HAL,t

]
,

and thus

J(L)− JT (L) =− tr
[
P0(A

⊺
L)TH⊺HATL

]

+ lim
t→∞

tr
[
[I ⊗ (Q+ LRL⊺)][I ⊗ (A⊺

L)T ]A⊺
L,tH

⊺HAL,t[I ⊗ ATL]
]

=− tr
[
ATLP0(A

⊺
L)TH⊺H

]

+ lim
t→∞

tr
[
[I ⊗ ATL(Q+ LRL⊺)(A⊺

L)T ]A⊺
L,tH

⊺HAL,t
]
.

Therefore, by the properties of trace and Lemma 6.23 we obtain that

|J(L)− JT (L)| ≤∥P0∥ ∥ATL∥2 tr [H⊺H] + ∥Q+ LRL⊺∥ ∥(AL)T∥2 lim
t→∞

tr
[
A⊺
L,tH

⊺HAL,t
]

≤ ∥P0∥C2
Lρ(AL)T+1∥H⊺H∥∗ + (∥Q∥+ ∥R∥ ∥L∥2)C2

Lρ(AL)T+1C
2
L∥H⊺H∥∗

1− ρ(AL)
,
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where the last line follows by Lemma 6.30. So,

|J(L)− JT (L)| ≤
[
∥P0∥+

(∥Q∥+ ∥R∥ ∥L∥2)C2
L

1− ρ(AL)

]
∥H⊺H∥∗C2

Lρ(AL)T+1

This, together with Assumption 6.18 imply the first claim.

Next, for simplicity we adopt the notation AL,∞ to interpret the limit as t → ∞, then

similar to the proof of Proposition 6.20 we can compute that

⟨∇J(L)−∇JT (L), E⟩ =− 2tr
[
MT [E]P0(A

⊺
L)TH⊺H

]

+ tr
[
[I ⊗ ATL(Q+ LRL⊺)(A⊺

L)T ]NL,∞[E]
]

+ 2tr
[
[I ⊗MT [E](Q+ LRL⊺)(A⊺

L)T ]A⊺
L,∞H

⊺HAL,∞
]

+ 2tr
[
[I ⊗ ATLERL⊺(A⊺

L)T ]A⊺
L,∞H

⊺HAL,∞
]
.

Therefore, using (6.12) and Lemma 6.23 we have the following bound

|⟨∇J(L)−∇JT (L), E⟩| ≤2∥EH∥C2
L(T + 1)ρ(AL)T+1∥P0∥∥H⊺H∥∗

+ ∥Q+ LRL⊺∥C2
Lρ(AL)T+1∥NL,∞[E]∥∗

+ 2∥Q+ LRL⊺∥∥EH∥C2
L(T + 1)ρ(AL)T+1∥A⊺

L,∞H
⊺HAL,∞∥∗

+ 2∥ERL⊺∥C2
Lρ(AL)T+1∥A⊺

L,∞H
⊺HAL,∞∥∗

which by Lemma 6.30 is bounded as follows

|⟨∇J(L)−∇JT (L), E/∥E∥⟩| ≤2∥P0∥∥H∥∥H⊺H∥∗C2
L(T + 1)ρ(AL)T+1

+ ∥Q+ LRL⊺∥∥H∥ ∥H⊺H∥∗
[
2C3

L + 4C5
Lρ(AL)3/2

]
ρ(AL)T+1

[1− ρ(AL)]2

+ 2∥Q+ LRL⊺∥∥H∥∥H⊺H∥∗
C4
L(T + 1)ρ(AL)T+1

1− ρ(AL)

+ 2∥R∥∥L∥∥H⊺H∥∗
C4
Lρ(AL)T+1

1− ρ(AL)
.

Finally, choosing E = ∇J(L)−∇JT (L) together with Assumption 6.18 implies

∥∇J(L)−∇JT (L)∥ ≤ 2

[
κ2ξ + C2

L(κ2ξ + κ2ω∥L∥2)
1− ρ(AL)

]
C2
L∥H∥ ∥H⊺H∥∗(T + 1)ρ(AL)T+1

+ 2

[
κ2ω(κ2ξ + κ2ω∥L∥2)∥L∥ ∥H∥

(
CL + 2C3

Lρ(AL)3/2
)

1− ρ(AL)

]
∥H⊺H∥∗

C3
Lρ(AL)T+1

1− ρ(AL)
.
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Finally, the second claim follows by the following simple facts:

(T + 1)ρ(AL)T+1 ≤
√
ρ(AL)

T+1

1− ρ(AL)
, ∀T > 0,

as maxt≥0 tρ
t = 2

e ln 1/ρ
≤ 1

ln 1/ρ
≤ 1

1−ρ for any ρ ∈ (0, 1). This completes the proof.

Complete description of Theorem 6.24

The following is a detailed version of Theorem 6.24:

Theorem 6.24’. Suppose m0 = 0n and Assumption 6.18 holds for a data-set {Y iT}Mi=1. Define

∇ĴT (L) := 1
M

∑M
i=1∇ε(L,Y iT ), where ∇Lε(L,Y) is obtained in Lemma 6.10. Consider Sα

for some α > 0 and any s, s0 > 0 and τ ∈ (0, 1). Suppose the trajectory length

T ≥ ln

(
γ̄α
√

min(n,m)

s0

)
/

ln

(
1√
ρα

)

and the batch size

M ≥


2

(
να
√

min(n,m)

s s0 /τ

)2

+
4

3

(
να
√

min(n,m)

s s0 /τ

)
 ln(2n/δ),

where

γ̄α := 2
[
κ2ξ + C2

α(κ2ξ + κ2ωD
2
α)
]
C2
α∥H∥ ∥H⊺H∥∗

+ 2κ2ω(κ2ξ + κ2ωD
2
α)Dα ∥H∥∥H⊺H∥∗

(
Cα + 2C3

αρ
3/2
α

)
C3
α

√
ρα

T+1,

να :=
2(κξ +Dακω)κωC

2
α +

[
Cα + 2C3

αρ
3/2
α

]
∥H∥(κξ +Dακω)2

[1−√ρα]3/∥H⊺H∥∗
,

with ρα, Cα and Dα defined in Lemma 6.23. Then, with probability no less than 1 − δ,

Assumption 6.16 holds.

Additional concentration bound results

Combining the truncation bound in Proposition 6.21 with concentration bounds in Propo-

sition 6.20 we can provide probabilistic bounds on the “estimated cost” ĴT (L) and the
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“estimated gradient” ∇ĴT (L). The result involves the bound for the Frobenius norm of the

error with probabilities independent of T .

Theorem 6.24, can be viewed as a simplified application of Theorem 6.32 to character-

ize the required minimum trajectory length and minimum batch so that the approximate

gradient satisfies Assumption 6.16, with a specific s and s0.

Theorem 6.32. Suppose Assumption 6.18 holds. For any s > 0 and L ∈ Sα, if

M ≥


2

[
νL
√

min(n,m)

s ∥∇J(L)∥F

]2
+

4

3

[
νL
√

min(n,m)

s ∥∇J(L)∥F

]
 ln(2n/δ),

then with probability no less than 1− δ,

∥∇ĴT (L)−∇J(L)∥F ≤ s∥∇J(L)∥F + γ̄L
√

min(n,m)
√
ρ(AL)

T+1
,

with νL and γ̄L defined in Proposition 6.20 and Proposition 6.21, respectively.

Proof of Theorem 6.32. Recall that for any L ∈ Sα for some α > 0 we have

∥∇ĴT (L)−∇J(L)∥ ≤ ∥∇ĴT (L)−∇JT (L)∥+ ∥∇JT (L)−∇J(L)∥.

Thus, by Proposition 6.20 with s replaced by s∥∇J(L)∥F/
√

min(n,m) and applying Propo-

sition 6.21 to the second term, we obtain that with probability at least 1− δ:

∥∇ĴT (L)−∇J(L)∥ ≤ s∥∇J(L)∥F√
min(n,m)

+ γ̄L

√
ρ(AL)

T+1

[1− ρ(AL)]2
,

where

δ ≥ 2n exp




−Ms2/2
[
νL
√

min(n,m)

∥∇J(L)∥F

]2
+ 2

[
νL
√

min(n,m)

∥∇J(L)∥F

]
s/3


 .

Noticing ∥∇ĴT (L)−∇J(L)∥F ≤
√

min(n,m)∥∇ĴT (L)−∇J(L)∥ and rearranging terms will

complete the proof.

One can also provide the analogous concentration error bounds where the probabilities

are independent of the system dimension n.
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Proposition 6.33 (Concentration independent of system dimension n). Under the same

hypothesis, we have

P
[
|ĴT (L)− JT (L)| ≤ s

]
≥ 1− 2T exp

[ −Ms2/2

µ̄2
LT

2 + 2µ̄LTs/3

]
,

and

P
[
∥∇ĴT (L)−∇JT (L)∥ ≤ s

]
≥ 1− 2T exp

[ −Ms2/2

ν̄2LT
2 + 2ν̄LTs/3

]

− 2T exp

[ −Ms2/2

κ2ωµ̄
2
LT

2 + 2κωµ̄LTs/3

]

where

µ̄L :=
C2
L∥H⊺H∥∗

1− ρ(AL)
κ2L

ν̄L :=

[
2CL + 4C3

Lρ(AL)3/2
]
∥H∥ ∥H⊺H∥∗

[1− ρ(AL)]2
κ2L.

Proof of Proposition 6.33. Similar to the previous proof, we have

ĴT (L)− JT (L) = tr [(ZL − E [ZL])A⊺
LH

⊺HAL] ,

and thus, by (6.12) we obtain

|ĴT (L)− JT (L)| ≤∥ (ZL − E [ZL]) ∥ ∥A⊺
LH

⊺HAL∥∗. (6.35)

Next, we consider the symmetric random matrix (ZL − E [ZL]) and recall that ∥ξ(t) −
Lω(t)∥ ≤ κL almost surely; thus

∥XL∥ = ∥ηL∥2 ≤ κ2LT
2.

It then follows that
∥∥E
[
X 2
L

]∥∥ ≤ E
[
∥XL∥2

]
≤ κ4LT

4.

Therefore, by Lemma 6.31 we obtain that

P [∥ (ZL − E [ZL]) ∥ ≥ t] ≤ 2T exp

[ −Mt2/2

κ4LT
4 + 2κ2LT

2t/3

]
(6.36)
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Substituting t with t/∥A⊺
LH

⊺HAL∥∗ together with (6.35) implies the first claim because by

Lemma 6.30 κ2LT
2∥A⊺

LH
⊺HAL∥∗ ≤ µ̄LT .

Again, similar to (6.34) in the previous proof, by (6.12) we obtain that

|⟨∇ĴT (L)−∇JT (L), E⟩| ≤ ∥ 1

M

M∑

i=1

SL(E,Y iT )− E
[
SL(E,Y iT )

]
∥∥A⊺

LH
⊺HA∥∗

+ ∥ 1

M

M∑

i=1

XL(Y i)− E
[
XL(Y i)

]
∥∥NL[E]∥∗ (6.37)

where SL(E,Y) is the symmetric part of the following random matrix

−2ξ ω ⊺(I ⊗ E⊺) + 2(I ⊗ L)ω ω ⊺(I ⊗ E⊺).

So, we claim that almost surely

∥SL(E,Y)∥ ≤ 2∥(I ⊗ E)ω ∥(∥ξ ∥+ ∥(I ⊗ L)ω ∥)

≤ 2∥E∥κωT (κξT + ∥L∥κωT )

= κLκωT
2∥E∥,

and thus

∥E
[
SL(E,Y)2

]
∥ ≤ E

[
∥SL(E,Y)∥2

]
≤ κ2Lκ

2
ωT

4∥E∥2.

Therefore, by Lemma 6.31 we obtain that

P

[
∥ 1

M

M∑

i=1

SL(E,Y iT )− E
[
SL(E,Y iT )

]
∥ ≥ t

]
≤ 2T exp

[ −Mt2/2

κ2ωκ
2
LT

4∥E∥2 + 2κLκωT 2∥E∥t/3

]

Substituting t with t/∥A⊺
LH

⊺HAL∥∗ implies that

P

[
∥ 1

M

M∑

i=1

SL(E,Y iT )− E
[
SL(E,Y iT )

]
∥ ∥A⊺

LH
⊺HAL∥∗ ≥ t

]

≤ 2T exp

[ −Mt2/2

κ2ωµ̄
2
LT

2∥E∥2 + 2κωµ̄LT∥E∥t/3

]

because by Lemma 6.30 we have κ2LT
2∥A⊺

LH
⊺HAL∥∗ ≤ µ̄LT .
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Next, by substituting t with t/∥NL[E]∥∗ in (6.36) we have

P [∥ZL − E [ZL] ∥ ∥NL[E]∥∗ ≥ t] ≤ 2T exp

[ −Mt2/2

ν̄2LT
2∥E∥2 + 2ν̄LT∥E∥t/3

]

because Lemma 6.30 implies that κ2LT
2∥NL[E]∥∗ ≤ ν̄LT∥E∥. Thus, by combining the last

two inequalities and using the union bound for (6.37) we obtain that

P
[
|⟨∇ĴT (L)−∇JT (L), E⟩| ≥ t

]
≤ 2T exp

[ −Mt2/2

ν̄2LT
2∥E∥2 + 2ν̄LT∥E∥t/3

]

+ 2T exp

[ −Mt2/2

κ2ωµ̄
2
LT

2∥E∥2 + 2κωµ̄LT∥E∥t/3

]

Finally, substituting t with t∥E∥ and choosing E = ∇ĴT (L) − ∇JT (L) proves the second

claim.

Remark 6.34. We obtained a better bound for truncation of the gradient as

∥∇J(L)−∇JT (L)∥ ≤ γ̄1(L)

√
ρ(AL)

T+1

[1− ρ(AL)] ln(1/ρ(AL))
+ γ̄2(L)

ρ(AL)T+1

[1− ρ(AL)]2
,

which has been simplified for now.

6.5.8 Innovation correlation based approach

Before finishing this section and moving to numerical results, we provide a few remarks on

the innovation correlation approach as an alternative direction. It is based on inspecting the

autocovariance of the innovation error process

et(L) = y(t)−Hx̂L(t),

where x̂L(t) is the estimate obtained by a Kalman filter with a sub-optimal, but stabilizing,

Kalman gain L, y(t) is the noisy output measurement, and H is the observation matrix. The

k-step autocovariance matrix [et−k(L)et(L)⊺], for k = 0, 1, . . . , ℓ, is approximated empirically

using batch of independent observation signals. This is then compared to the its asymptotic

analytical expression to approximate the noise covariance matrices [Odelson et al., 2006]. Al-

ternatively, the autocovariance matrices can be used to directly estimate the optimal Kalman
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gain L∞. In particular, it is known that, with the optimal Kalman gain, the innovation pro-

cess becomes independent (or white), i.e., [et−k(L∞)et(L∞)⊺] = 0 for k > 0. This criteria is

used in [Zhang et al., 2020] to obtain the optimal Kalman gain by minimizing the normalized

autocovariance matrices with a gradient-based optimization algorithm.

6.6 Numerical Simulations

Herein, we showcase the application of the developed theory for improving the estimation

policy for an LTI system. Specifically, we consider an undamped mass-spring system with

known parameters (A,H) with n = 2 and m = 1. In the hindsight, we consider a variance

of 0.1 for each state dynamic noise, a state covariance of 0.05 and a variance of 0.1 for the

observation noise. Assuming a trajectory of length T at every iteration, the approximate

gradient is obtained as in Lemma 6.10, only requiring an output data sequence collected

from the system in (6.1). Then, the progress of policy updates using the SGD algorithm for

different values of trajectory length T and batch size M are depicted in Figure 6.1 where each

figure shows average progress over 20 rounds of simulation. The figure demonstrates a linear

convergence outside of a neighborhood of global optimum that depends on the bias term in

the approximate gradient (due to truncated data trajectories). The rate then drops when

the policy iterates enter into this neighborhood which is expected as every update only relies

on a biased gradient—in contrast to the linear convergence established for deterministic GD

(to the exact optimum) using the true gradient.

6.7 Remarks and Future Directions

In this chapter, we considered the problem of learning the optimal (steady-state) Kalman

gain for linear systems with unknown process and measurement noise covariances. Our

approach builds on the duality between optimal control and estimation, resulting in a direct

stochastic PO algorithm for learning the optimal filter gain. We also provided convergence

guarantees and finite sample complexity with bias and variance error bounds that scale

well with problem parameters. In particular, the variance is independent of the length of
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Figure 6.1: SGD directly from output data and without prior knowledge of the noise covariances or

state information. Mean progress of the normalized estimation error over 20 simulations obtained

from data trajectories of a) different batch size M and b) different length T .
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data trajectories and scales logarithmically with problem dimension, and bias term decreases

exponentially with the length.

This work contributes a generic optimization algorithm and introduces a filtering strategy

for estimating dynamical system states. While theoretical, it raises privacy concerns similar

to the model-based Kalman filter. Limitations include the need for prior knowledge of system

parameters, nonetheless, parameter uncertainties can be treated practically as process and

measurement noise. Finally, sample complexities depend on the stability margin 1−
√
ρ(AL),

inherent to the system generating the data. The result of this chapter has been mainly

adapted from [Talebi et al., 2023].
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Karl J Åström. Introduction to Stochastic Control Theory. Courier Corporation, 2012.
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Mauŕıcio C De Oliveira, Jacques Bernussou, and José C Geromel. A new discrete-time robust
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