Discrete Consersus Dynamic:

Consider DAP Lyn. on directed graph D: X(+)= -L(D) X(+) me first point out the difference between "discretization" versus "discrete sampling". -First, let's just naively discredize this dyn of stepsize A: Discretization: $(forward-Euler) \times (J+1) - \times (J) = - L(D) \times (J)$ after this metrix $or : (I) \times (J+1) = [I - \Delta L(D)] \times (J).$ afterns of D afterns of DThis may give us a discrete dynamic of Consensors, But one has to be careful about the choice of the stepsize A. Non-Example: Consider DAP dyn. on a directed cycle of 4 nodes. Now, lets discrettre this dyn of Del. Do you see what does this discrete dynamic do 91 > So, in general, D has to be chosen sufficiently small onel you can implement (I) in a distributed way!

Discrete Sampling:
This dime, let's just sample drom the antioners DAP dyn.
in 6-time indervals, i.e.:

$$\dot{x}(t) = -L(D) \times (t)$$

sample $z(k) = x(5k)$ for $k=0,1,2,...$
NUW, $Z(k+1) = x(5(k+1)) = e^{5(k+1)L(D)} \times (v)$
heave $SL(D)$, $SkL(D) \longrightarrow e^{SL(D)} e^{SL(D)} \times (v)$
 $z(k+1) = e^{SL(D)} e^{SL(D)}$, $z(v) = e^{SL(D)} \times (Sk)$
 $z(k+1) = e^{SL(D)} Z(k)$, $z(v) = x(s)$.
Now, the dyn. of $z(y)$ is the true sampling of DAP and
we already know that is special about the matrix $e^{SL(D)}$
that it can guarandree convergence to span [1].
Proposition: for all digraphs D and sampling indocule sto
 $e^{SL(D)} I = 1$ and $e^{SL(D)} \ge 0$.
Tool-source 1
Now zone convergence matrix

Furtheremore, the right/left eigenvectors of E^{sL(D)} are those of L(D) associated of eigenvalues e^{sNi}, izlo-, n. Node: Don't Confuse "non-negative matrices" with "positive definite ones". It's just on unbortunate similarity in their names.

 $\frac{p_{nort}}{e} = \frac{sL(D)}{1} = \left(\frac{z}{z} + \frac{(-s)^{2}}{z!}L(D)^{2}\right) = \frac{(-s)^{2}}{z!}L(D)^{2} = \frac{(-s)^{2}}{z!}L(D)^{2} = 1.$ Notice that 35 (large enough) C/R+ 3 - L(D)+SI >0. Therefore, -LLD) is a "metzler" (or essentially non-negative) matrix. Lemma: the C is notzler, then etc 7,0, 7 t7,0 I

This now also suggesst how to generalize both AP & OAP Continuous dyn:

Suppose $\dot{X}(t) = A X(t)$ 5_7. A1=0 A is metaler and $digraph of A, D = (\frac{2}{3}i3, E)$ Thm: [noreau '04] (are>o (V,v)eE If D has a rooted out-brinching then $x(t) \rightarrow span \{1\}$.

More observations: ef D is dalanced → 1^TL(D)=0 → 1^Te^{SL(D)}=1 >> = SL(D) has also column-sum =] => e is a doubly stochastic matrix, i.e., a non-negative matrix with row-and-colum-sum zero. Thm [Birkott's] Any doubly stochastic matrix is a convex combination of permutation matrices. 80, if D is balanced, then $Z(k+1) = \frac{\delta Z(D)}{E} = \frac{\chi}{Z(k)} = \frac{\chi}{Z(k)} + \frac{\chi}{Z(k)}$ C permutation matrices with x; >, > , Za;=1. > "Every state of nodes, at any time in DAP, is a convex combination of the values of all nodes at the previous instance." $\chi_{2}^{(\delta)}$ $\chi_{4}(0)$ $\chi_{4}(0)$ picture:

 $\frac{\text{Lemma:}}{\left[e^{-S^{2}(D)}\right]_{ij}} > 0 \iff \begin{cases} i=j \\ \text{or} \\ \exists \text{ directed path Brow} \\ j \rightarrow i \end{cases}$ $e^{-SL(D)} = e^{-SM} S(MZ-L(D))$ $e^{-E} = e^{-E} e^{-E}$ Proof: Tero-pattern in $e^{L(D)}$ and $e^{\mu z - L(D)}$ are the same. Chose M large enough, sup μ^{z} , max [din(vi)]. Notice: Herefere, but my posible integer P: $\left[\left(L+\right)^{p} \right]_{ij}$ > \Longrightarrow \exists a directed path of engh p from $j \rightarrow i eD$. Finally, $e^{L+} = \frac{z}{P_{L}} \frac{(L+)^{P}}{P!}$, So $(e^{L_{i}})_{ii} > 0 \implies 3 a directed path from <math> j = i \in P$. Ē

Colollary: D dis a routed and branching if adapting if
(but any Sto) at least one of the clumps of
$$e^{SL(D)}$$
 is positive.
Nows suppose (D) is balanced and has a routed out branching.
Let us consider the following Lyapunov Bonchim:
 $V(Z) = \max Z_i - \min Z_i$
- Nobe that $V(Z) \ge 0$ with equality if and only if $Ze spinf2$
- Consider $Z(kti) = \bar{e}^{SL(D)} Z(k)$:
Recall that each state of $Z(kti)$ is a convex
Combination of the ones in $Z(k)$ -
 $V(Z) = \max Z_i(k) + de Z_i(k)$
 $Z_i(k) = \max Z_i(k) + de Z_i(k)$
 $Z_i(k) = \max Z_i(k) + de Z_i(k)$
 $Z_i(k) = \sum_{i=1}^{N} e^{iZ_i(k)} + de Z_i(k)$

$$= Z_{i}(k) - Z_{i}(k) + \alpha_{e} \left(Z_{e}(k) - Z_{i}(k) \right) + B_{e} \left(Z_{i}(k) - Z_{e}(k) \right)$$

$$\leq \circ \qquad \text{with equality iff } Z_{i(k)} = Z_{e}(k) = Z_{i}(k) \cdot \cdot$$

see the paper by moreau for the generalization of DOP Myn. using the following dynamics:

 $V(x) = \frac{1}{2}x^{T}x$ and $V(x) = \max_{i \in [D]} x_{i}^{i} - \min_{i \in [D]} x_{i}^{i}$.