Rerien:

- The DAP $\dot{x}=-L(D) x$ reretes average consersus from every initial condition
if and orly if $(D$ is weotly cimected and balanad.
- Cartesian produet of (undirected) graphs G_{1}, G_{2} denuted by $G=G_{1} \square G_{2}$
- prgangiler $\&$ cartesian praducts
- [Prime facturication of gappts]:

Eviry conneeted gaph hos a unique prine fracturiation w.r.t. Carterian produet.

$$
-L\left(G_{1} \square G_{2}\right)=L\left(G_{1}\right) \otimes \tau_{m}+\Sigma_{n} \otimes L\left(G_{2}\right)
$$

kronectar produes of matrices.
Next, we try t understand the spectiam of $L\left(G_{1} \triangle G_{2}\right)$ w.r.t. the ones for $L\left(G_{1}\right), L\left(G_{2}\right)$.

Lemma: assume $\begin{cases}\lambda_{1}, \cdots, \lambda_{n} & \text { eignvabes of } L\left(G_{1}\right) \\ \mu_{1}, \cdots, \mu_{m} & \text { eigmardues of } L\left(G_{2}\right)\end{cases}$
associnted with $\left\{\begin{array}{l}u_{1}, \ldots, u_{n} \text { eigenvectors of } L\left(G_{1}\right) \\ v_{1}, \ldots, v_{n} \text { " } L\left(G_{2}\right)\end{array}\right.$.
kronecker
Then, $u_{i} \otimes v v_{j}$ is the eigen vector of
$L\left(G, \square G_{2}\right)$ associated of she eigenvalue $\lambda_{i}+\mu_{j}$, for each $i=1, \ldots, n$ and $j=1, \ldots, m$,
proof:

$$
\begin{aligned}
L\left(G_{1} \square G_{2}\right)\left(u_{i} \otimes v_{j}\right) & =\left(L\left(G_{1}\right) \otimes \tau_{m}\right)\left(u_{i} \otimes v_{j}\right)+\left(\tau_{n} \otimes L\left(G_{2}\right)\right)\left(u_{i} \otimes v_{j}\right) \\
& =\left(L\left(G_{1}\right) u_{i} \otimes v_{j}+u_{i} \otimes\left(L\left(G_{2}\right) v_{j}\right)\right) \\
& =\lambda_{i} u_{i} \otimes v_{j}+\mu_{j} u_{i} \otimes v_{j} \\
& =\left(\lambda_{i}+\mu_{j}\right) u_{i} \otimes v_{j}
\end{aligned}
$$

Tho [Factorization Lemma for AP on G]:
suppose $G=G_{1} \triangle G_{2} \otimes \cdots \Delta G_{n}$ and

$$
\dot{x}_{i}=-L\left(G_{i}\right) x_{i}(t) \quad \text { of } x_{i}(0)=\left[\begin{array}{c}
x_{i, 1}(0) \\
x_{i}, 2(0) \\
\vdots \\
x_{i}, v_{i}(\cdot)
\end{array}\right]
$$

for $i=1, \ldots, n$.
Then, the Ap on $G($ i.e. $\dot{x}(t)=-L(G) x(t))$ follows

$$
x(t)=x_{1}(t) \otimes x_{2}(t) \otimes \cdots \otimes x_{n}(t)
$$

y_{y} initial condition $x_{1}(0) \otimes x_{2}(0) \otimes \cdots(2) x_{n}(0)$.

Proof: Note that

$$
G=G_{1} \nabla G_{2} \square \cdots \square G_{n}=(\cdots(\underbrace{\left(G_{1} \nabla G_{2}\right) \square G_{3}}) \square \cdots \cdot) \square G_{n}
$$

Therefore, it suffices to show this for $n=2$. Thor,
supp. $G=G, \Delta G_{2}$ and recall

$$
L(G)=L\left(G_{1}\right) \otimes I_{l}+\Sigma_{k} \otimes L\left(G_{2}\right) \quad\left\{\begin{array}{l}
k=\left|G_{1}\right| \\
l=\left|G_{2}\right|
\end{array}\right.
$$

Now, let for $i=1,2$:

$$
\begin{aligned}
& t \text { for } i=1,2 \text { : } \\
& \dot{x}_{i}(t)=-L\left(G_{i}\right) x_{i}(t) \text { with } x_{i}(0) \text { given. }
\end{aligned}
$$

and define $x(t) \triangleq x_{1}(t) \otimes x_{2}(x)$. Then

$$
\begin{aligned}
\dot{x}(t) & \stackrel{\left(w_{1} y^{9}\right)}{=} \dot{x}_{1}(t) \otimes x_{2}(t)+x_{1}(t) \otimes \dot{x}_{2}(t) \\
& =\left(-L\left(G_{1}\right) x_{1}(t)\right) \otimes x_{2}(t)+x_{1}(t) \otimes\left(-L\left(G_{2}\right) x_{2}(t)\right) \\
& =-\left(L\left(G_{1}\right) x_{1}(t)\right) \otimes\left(I_{l} x_{2}(t)\right)-\left(I_{k} x_{1}(t)\right) \otimes\left(x_{1}\left(L\left(G_{2}\right) x_{2}(t)\right)\right. \\
w h y! & =-\left(L\left(G_{1}\right) \otimes q_{l}\right)\left(x_{1}(t) \otimes x_{2}(t)\right)-\left(q_{k} \otimes L\left(G_{2}\right)\right)\left(x_{1}(t) \otimes x_{2}(t)\right) \\
& =-L(G) x(t) .
\end{aligned}
$$

Question: Under what condition does $x(t)$ converges 4 ! What is the rate of convergence ?!

New Approach:
Next, we would like to ask more complicated questions that requires different technignes; e.g.
what happens in (AP) if the underling graph G or D is changing during the evolution of states a" "
me use Lyapunor techniques and its generalizations to amsuner these kind of questions!

Lyapunov stern: (see Appendix 3 in [meshahi 10])
Suppose $\dot{x}=f(\alpha(\gamma)), \alpha_{(0)}=$ given sit. $f(0)=0$.
Def, we soy origin is "stable" if

$$
\begin{aligned}
& 1 \text { origin is stable of } \\
& \forall \varepsilon>0, \exists \delta>0 \Rightarrow \quad\|x(0)\| \leq \delta \Rightarrow\|x(t)\| \leq \varepsilon, \forall t \geq 0)
\end{aligned}
$$

we syr origin is "asymptotically stable" (AS) if
origin is stable and $3 \delta>0 \Rightarrow\left(\|x(0)\| \leq \delta \Rightarrow \begin{array}{c}x(t) \rightarrow 0 \\ \text { os } \rightarrow \infty \rightarrow \infty\end{array}\right)$
we say origin is "globally reymptatically sable" (GAS) if
origin is (AS) for arbitualy $x(0)$.

Thu: If Here exist a "Lyapunov fimetion" $V: \mathbb{R} n \rightarrow \mathbb{R}$, i.e.,

$$
\left\{\begin{array}{l}
V(0)=0 \\
V(x) \geqslant 0 \text { wide equality th } x=0 \\
\frac{d}{d t}(V(x(f)))<0 \quad \text { wherever } x(t) \neq 0
\end{array}\right.
$$

Then the origin is asymptotically stable. En addition, if $V(x) \rightarrow \infty$ is $\|x\| \rightarrow \infty$, the origin is (GAS).

Let's see if we can use this for (AP):

$$
\dot{x}=-L(G) x \text {, define: } V(x(t)):=1 / 2 x^{\top}(t) x(t)=1 / 2\|x(t)\|^{2}
$$

seen $\dot{V}(t)=\frac{d}{d t}\left(V(x(t))=x^{\top}(t) \dot{x}(t)=-x^{\top}(t) L(G) x(t)\right.$

$$
L(G) \text { is P.S.D } \Longrightarrow \dot{V}(t) \leqslant 0 ;
$$

but it is not strictly <0; (recall that $L(G) I=0$)
Here, $V(t)$ is NOT a Lyapunov function; instead, we call it a "weak Lyapunov function".

Question: what can we guarantee for a system wt a weak Lyapunos function?

Tho: [LaSalle's Invariance Principle]
$\dot{x}=f(x(\gamma)), \quad \alpha(0)=$ given,$\quad f(0)=0$.
V : weak Lyagmoov fume s.d. $V(x) \rightarrow \infty$ os $\|x\| \rightarrow \infty$
M : largest invariant set contained in $\left\{x \in R^{n} \mid \dot{V}(x)=0\right\}$.
Then,

$$
\operatorname{iif}_{y \in M}\|x(t)-y\| \rightarrow 0 \quad \text { os } t \rightarrow \infty \text {. }
$$

Back to our AP dynamics

$$
\begin{aligned}
& \text { To our AP dynamics } \\
& \left\{x \in \mathbb{R}^{n} \mid \dot{V}(t)=0\right\}=\left\{x \in \mathbb{R}^{n} \mid x^{\top} L(G) x=0\right\}=\operatorname{span}\{1\} .
\end{aligned}
$$

and as $\dot{x}(t)=0$ if $x(t) \in \operatorname{spm}\{1\} \Rightarrow M=\operatorname{span}\{1\}$
Thus, by LaSalle's Invariance Principle,

$$
x(t) \rightarrow \operatorname{span}\{1\}
$$

what about the DAP dynamics?

$$
\begin{aligned}
& \left.\dot{x}_{(f)}=-L(D) x(t) \quad \text { define } V(x(t))\right)=1_{2} x^{\top}(t) x(t) \\
\Rightarrow & \left.\dot{V}(f)=x^{\top}(f) \dot{x}(f)=-x^{\top}(t) l_{\text {in }}(D)\right) x(t)
\end{aligned}
$$

By Gersigrian disk the ≤ 0
not strictly $\langle 0 . \Rightarrow$ weak Lyaponov finch.

If D is strongly connected then, the largest invariant set in.

$$
\left\{x \in \mathbb{R}^{n} \mid \dot{v}(t)=0\right\}=\left\{x \mid x^{\top}\left(L(D)+L(D)^{\top}\right) x=0\right\}
$$

is the null space of $L(D)$ which is span $\{1\}$. (Why?)
\Rightarrow By, LaSalle's Inv. Prim., $x(t) \rightarrow$ span $\{1\}$.
what if (1) is not strongly connected, yet contains a rooted out-bromching $t \Rightarrow$ redefine $V(2)=\underset{j}{\max } 2 i-\min 2 ;$.

Switched Agreement protucal:
consider finitely many strongly conneeded digraphs switched AP

$$
\left\{D_{1}, \ldots, D_{k}\right\}
$$

\longrightarrow
suppose $\dot{X}_{(t)}=-L\left(D_{i}\right) x_{(\gamma)}$ with $i \in\{1, \ldots, k\}$.
This is a "Switched Liven system" and described by "Differential Inclusion" $\dot{x}(t) \in\left\{-L\left(D_{i}\right) x(t) \mid i \in\{1, . ., k\}\right\}$.
Considering $V(x(\theta))=\frac{1}{2} x^{\sigma}(t) x(\theta)$, we get

$$
\dot{V}(t) \in\left\{-x^{\top}(t) L\left(D_{i}\right) x(t) \mid \quad i \in\{1, \ldots, k\}\right\} \text {. }
$$

where each dynamic vanishes on:

$$
F_{j}=\left\{\alpha \in \mathbb{R}^{\eta} \mid x^{\top}\left(L\left(D_{i}\right)+L\left(D_{i}\right)^{\top}\right) x\right\}
$$

But, of each D_{i} is strongly connected,

$$
F_{i}=\operatorname{span}\{1\} \text { for every } i \in\{1, \ldots, k\}
$$

We call $V(t)$ here a "common weak Lyapunov fumetion" for the switched agreement protocol.
\Rightarrow A generalization of LaSalle's $I_{n v}$. principle [Tho A. 9 in veshahi'io] still implies that $x(t) \longrightarrow \operatorname{span}\{1\}$.

Thu A.9: suppose v is a common weak Lyaponov function for the switched system

$$
\begin{aligned}
\dot{x}(t)=f_{\sigma(t)}(x(t)), & \sigma(t) \in S=\{1, \ldots, k\} \\
& \tau_{\text {swishing mechanism }}
\end{aligned}
$$

$$
\tau_{\text {switching mechanism. }}
$$

Let M_{i} he the largest invariant set under mode i that is contained in

$$
\left\{x \in \mathbb{R}^{n} /\left[\frac{\partial v(x)}{\partial x}\right]^{\top} f_{i}(x)=0\right\} .
$$

If $M_{i}=M$; $=M^{*}$ for all $i, j \in S$, then $X(f) \rightarrow M^{*}$ as $t \rightarrow \infty$.

