Kalman Filter (Discrete Time)

Major sources:

Spring 2022 - Dan Calderone

Dynamics: x(k+1) = Ax(k) + w(k)

$$w(k) \sim \mathcal{N}(0, W)$$

State-Space

$$x \in \mathbb{R}^2$$

Dynamics: x(k + 1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

 $x \in \mathbb{R}^2$

State-Space

Sensor:

z(k) = Hx(k) + v(k)

 $v(k) \sim \mathcal{N}(0, V)$

ment

 $z \in \mathbb{R}$

Dynamics: x(k+1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

State-Space

 $x \in \mathbb{R}^2$

Sensor:

z(k) = Hx(k) + v(k)

 $v(k) \sim \mathcal{N}(0, V)$

Filter

 $\hat{x}(k), \; \Sigma(k)$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

 $z \in \mathbb{R}$

Dynamics: x(k+1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

z(k) = Hx(k) + v(k)

 $v(k) \sim \mathcal{N}(0, V)$

Filter

 $\hat{x}(k), \; \Sigma(k)$

state estimate covariance estimate

 $\tilde{x}(k) = \hat{x}(k) - x(k)$

 $\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

$$\Sigma(k|k-1) = A\Sigma(k-1)A^T + W$$

Dynamics:

$$x(k+1) = Ax(k) + w(k)$$

$$w(k) \sim \mathcal{N}(0, W)$$

Sensor:

$$z(k) = Hx(k) + v(k)$$

$$v(k) \sim \mathcal{N}(0, V)$$

Filter

$$\hat{x}(k), \Sigma(k)$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Dynamics: x(k + 1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

z(k) = Hx(k) + v(k)

 $v(k) \sim \mathcal{N}(0, V)$

Filter

 $\hat{x}(k), \Sigma(k)$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

Dynamics: x(k+1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

Sensor: z(k) = Hx(k) + v(k)

 $v(k) \sim \mathcal{N}(0, V)$

Filter

 $\hat{x}(k), \Sigma(k)$

state estimate covariance estimate

 $\tilde{x}(k) = \hat{x}(k) - x(k)$

 $\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

Dynamics: x(k+1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

 $\hat{x}(k), \; \Sigma(k)$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

Dynamics: x(k+1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

z(k) = Hx(k) + v(k)

 $v(k) \sim \mathcal{N}(0, V)$

Filter

 $\hat{x}(k), \Sigma(k)$

state estimate covariance estimate

 $\tilde{x}(k) = \hat{x}(k) - x(k)$

 $\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

Dynamics: x(k+1) = A

$$x(k+1) = Ax(k) + w(k)$$

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\left[\hat{x}(k), \ \Sigma(k)\right]$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^T + K(k)VK(k)^T$$

Dynamics: x(k+1) = Ax(k) + w(k)

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\left[\hat{x}(k), \ \Sigma(k)\right]$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

$$\Sigma(k|k-1) = A\Sigma(k-1)A^T + W$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^{T} + (K(k)VK(k)^{T})$$

Optimization

 $\min_{K(k)}$

trace $\Sigma(k)$

minimize (mean-squared) error after measurement

Dynamics:
$$x(k+1) = Ax(k) + w(k)$$

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\hat{x}(k), \; \Sigma(k)$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^{T} + (K(k)VK(k)^{T})$$

Gain

$$K(k) = \sum_{k=0}^{\infty} (k|k-1)H(k)^{T} \left(H(k)\sum_{k=0}^{\infty} (k|k-1)H(k)^{T} + V\right)^{-1}$$
$$= \sum_{k=0}^{\infty} (k)H^{T}V^{-1}$$

Optimization

$$\min_{K(k)}$$

trace $\Sigma(k)$

minimize (mean-squared) error after measurement

Dynamics:
$$x(k+1) = Ax(k) + w(k)$$

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\hat{x}(k), \Sigma(k)$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^T + K(k)VK(k)^T$$

$$= (I - K(k)H)\Sigma(k|k-1)$$

Gain

$$K(k) = \sum_{k=0}^{\infty} (k|k-1)H(k)^{T} \left(H(k)\sum_{k=0}^{\infty} (k|k-1)H(k)^{T} + V\right)^{-1}$$
$$= \sum_{k=0}^{\infty} (k)H^{T}V^{-1}$$

Optimization

$$\min_{K(k)}$$

trace $\Sigma(k)$

minimize (mean-squared) error after measurement

$$x(k+1) = Ax(k) + w(k)$$

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\hat{x}(k), \Sigma(k)$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^T + K(k)VK(k)^T$$

$$= (I - K(k)H)\Sigma(k|k-1)$$

Gain

$$K(k) = \sum_{k=0}^{\infty} (k|k-1)H(k)^{T} \left(H(k)\sum_{k=0}^{\infty} (k|k-1)H(k)^{T} + V\right)^{-1}$$
$$= \sum_{k=0}^{\infty} (k)H^{T}V^{-1}$$

Optimization

$$\min_{K(k)}$$

trace $\Sigma(k)$

minimize (mean-squared) error after measurement

$$x(k+1) = Ax(k) + w(k)$$

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\hat{x}(k), \; \Sigma(k)$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^{T} + (K(k)VK(k)^{T})$$

$$= (I - K(k)H)\Sigma(k|k-1)$$

Gain

$$K(k) = \sum_{k=0}^{\infty} (k|k-1)H(k)^{T} \left(H(k)\sum_{k=0}^{\infty} (k|k-1)H(k)^{T} + V\right)^{-1}$$
$$= \sum_{k=0}^{\infty} (k)H^{T}V^{-1}$$

Optimization

$$\min_{K(k)}$$

trace $\Sigma(k)$

minimize (mean-squared) error after measurement

$$x(k+1) = Ax(k) + w(k)$$

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\hat{x}(k), \; \Sigma(k)$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^{T} + (K(k)VK(k)^{T})$$

$$= (I - K(k)H)\Sigma(k|k-1)$$

Gain

$$K(k) = \sum_{k=0}^{\infty} (k|k-1)H(k)^{T} \left(H(k)\sum_{k=0}^{\infty} (k|k-1)H(k)^{T} + V\right)^{-1}$$
$$= \sum_{k=0}^{\infty} (k)H^{T}V^{-1}$$

Optimization

$$\min_{K(k)}$$

trace $\Sigma(k)$

minimize (mean-squared) error after measurement

$$x(k+1) = Ax(k) + w(k)$$

 $w(k) \sim \mathcal{N}(0, W)$

Sensor:

$$z(k) = Hx(k) + v(k)$$

 $v(k) \sim \mathcal{N}(0, V)$

Filter

$$\hat{x}(k), \; \Sigma(k)$$

state estimate covariance estimate

$$\tilde{x}(k) = \hat{x}(k) - x(k)$$

$$\Sigma(k) = \mathbf{E} \Big[\tilde{x}(k) \tilde{x}(k)^T \Big]$$

Prediction

$$\hat{x}(k|k-1) = A\hat{x}(k-1)$$

Measure

$$\hat{x}(k) = \hat{x}(k|k-1) + K(k)(z(k) - H\hat{x}(k|k-1))$$

$$\Sigma(k) = (I - K(k)H)\Sigma(k|k-1)(I - K(k)H)^T + K(k)VK(k)^T$$

$$= (I - K(k)H)\Sigma(k|k-1)$$

Gain

$$K(k) = \sum_{k=0}^{\infty} (k|k-1)H(k)^{T} \left(H(k)\sum_{k=0}^{\infty} (k|k-1)H(k)^{T} + V\right)^{-1}$$
$$= \sum_{k=0}^{\infty} (k)H^{T}V^{-1}$$

Optimization

trace $\Sigma(k)$

minimize (mean-squared) error after measurement

State-Space

 $z \in \mathbb{R}$

Definite (Symmetric) Matrices - Reference/Review

Quadratic Form:

$$f(x) = x^T Q x \qquad Q \in \mathbb{R}^{n \times n} \quad Q = Q^T$$

$$Q \in \mathbb{R}^{n \times n}$$

 $x^T Q x > 0 \quad \forall \ x \quad x \neq 0$

 $x^T Q x < 0 \quad \forall \ x \quad x \neq 0$

some x

$$Q = Q^T$$

Definiteness:

Positive definite:

Negative-definite

PD	\bigcirc	

$$Q \succ 0$$

$$Q \succ 0$$

Notation

$$Q \succeq 0 \qquad x^T Q x \ge 0 \qquad \forall \ x$$

$$Q \prec 0$$

Positive semi-definite

NSD

PSD

Indefinite:

Surfaces:

ND

 $Q \leq 0$

 $x^T Q x \le 0 \qquad \forall \ x$

Definition

 $x^T Q x > 0$

 $x^T Q x < 0$ some x

Analogy

...positive orthant

...positive orthant w/ boundary

...negative orthant

...negative orthant w/ boundary

...the rest of the space

$f(x) = x^T Q x = 1$

Eigenvalues

$$\lambda_i > 0 \quad \lambda_i \in eig(Q)$$

$$\lambda_i \ge 0 \quad \lambda_i \in eig(Q)$$

$$\lambda_i < 0 \quad \lambda_i \in eig(Q)$$

$$\lambda_i \le 0 \quad \lambda_i \in eig(Q)$$

Eigenvalue condition proof:

...consider eigenvector coordinates

$$x = Vx'$$

since V is invertible...

$$\forall x \iff \forall x'$$

$$x^{T}Qx = xVDV^{T}x = x'^{T}Dx' = \sum_{i} \lambda_{i} x_{i}'^{2}$$

$$\sum_{i} \lambda_{i} x_{i}^{\prime 2} > 0 \quad \forall x^{\prime} \iff \lambda_{i} > 0 \quad \forall \lambda_{i} \in eig(Q)$$

$$x \neq 0$$

$$Q = VDV^{T} = \begin{bmatrix} \begin{vmatrix} & & \\ v_{1} & v_{2} \\ & & \end{vmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} - & v_{1}^{T} & - \\ - & v_{2}^{T} & - \end{bmatrix} \qquad \qquad ||v_{i}||_{2} = 1$$

$$f\left(\frac{1}{\sqrt{\lambda_{1}}}v_{1}\right) = \frac{1}{\sqrt{\lambda_{1}}}v_{1}^{T}Qv_{1}\frac{1}{\sqrt{\lambda_{1}}}$$

$$= \frac{1}{\sqrt{\lambda_{1}}}\begin{bmatrix} \begin{vmatrix} 1 \\ v_{1} \\ \end{vmatrix} \end{bmatrix}^{T}\begin{bmatrix} \begin{vmatrix} 1 \\ v_{1} \\ \end{vmatrix} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}\begin{bmatrix} - & v_{1}^{T} & - \\ - & v_{2}^{T} & - \end{bmatrix}\begin{bmatrix} \begin{vmatrix} 1 \\ v_{1} \\ \end{vmatrix} \end{bmatrix} \frac{1}{\sqrt{\lambda_{1}}}$$

$$= \frac{1}{\sqrt{\lambda_{1}}}\begin{bmatrix} 1 \\ 0 \end{bmatrix}^{T}\begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}\begin{bmatrix} 1 \\ 0 \end{bmatrix} \frac{1}{\sqrt{\lambda_{1}}} = \frac{\lambda_{1}}{(\sqrt{\lambda_{1}})^{2}} = 1$$

surface

level sets

Quadratic Form - Level Sets in 3D - (for fun)

Quadratic Form:

$$f(x) = x^T Q x \qquad Q \in \mathbb{R}^{n \times n} \quad Q = Q^T$$

$$Q \in \mathbb{R}^{n \times n}$$

$$Q = Q^T$$

Definite Matrices (Positive or Negative)

2D

3D

...all positive or all negative eigenvalues

Eigenvalues: two negative, one positive ...expand 1D negative eigenvector into an ellipse...

Eigenvalues: two negative, one positive ...expand 1D positive eigenvector into an ellipse...