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Definite (Symmetric) Matrices - Reference/Review

Quadratic Form:
Definiteness:

Positive definite:

Positive semi-definite
Negative-definite

Negative semi-definite

Indefinite:

Surfaces: (@ -0

flx)=2'Qx QeR™" Q=

Short Notation Definition

PD O-0 2 Qx>0 Vu r # 0
PSD Q0 ' Qe>0 V&
ND Q=<0 2'Qr<0 Vaz x#0
NSD Q=0 TQr<0 V=

z'Qxr >0 some x

'Qr <0 some x

QT

Analogy

...positive orthant

...positive orthant
w/ boundary

...negative orthant

...negative orthant
w/ boundary

...the rest of the space

flz) =2"Qr =1

surface

\\

level sets

Eigenvalues

A >0 A\ €eig(Q)
Ai >0 A\ €eig(Q)
A <0\ € eig(Q)

Ai <0\ € eig(Q)

Eigenvalue condition proof:

...consider eigenvector coordinates
/
x=Vx

since V is

/
invertible... \V/ZE' e \V/.CE

' Qr =2VDVie =2"Ds = Z )\2-51322

1

Y hal®>0 V' = N >0 VA€ eigQ)

x#0

T
~ o |vil, =
[— v2T —] Ui 2 1




Quadratic Form - Level Sets in 3D - (for fun)

Quadratic Form: f(ili‘) — ZTQQJ‘ Q c R"*" Q — QT

Definite Matrices
(Positive or Negative)

*
2D ¢
L
- <
v »
’ - 4

3D

(@

S

...all positive or all negative eigenvalues

Indefinite

Eigenvalues: two negative, one positive

...expand 1D negative eigenvector
into an ellipse...

Eigenvalues: two negative, one positive

...expand 1D positive eigenvector
into an ellipse...



