AA597 - Network Dynamics - Spring 2022

Homework 1

1. Graph Matrices
Consider the graphs G = (V, ) shown below
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(a) Write the following matrices for each graph in the image above.
o Incidence matrix: D € RIVI*€l
« (Undirected) Adjacency matrix: A € RVI*VI
(Undirected) Laplacian: L € RYVIxVI
o Directed Adjacency matrix: Aj, € R

VIxV|

o In-degree Laplacian: L;, € RVIxVI
For each graph, choose node and edge orderings that make the structure easier to see. (If an
edge orientation is not given, pick one.) Pay attention to how the structure of each graph

is expressed in each matrix. Be careful how the definition of these matrices are different for
directed vs undirected graph.

(b) For the Laplacian and adjacency matrices from above, compute their eigenvalues and eigen-
vectors. What structure do you notice?

Note: it’s not always easy to notice relevant structure from numerical computations of things
like eigenvectors so don’t stress about this part.

2. Incidence Matrix Decomposition

Consider the graph G = (V, ) shown below
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(a) Write the incidence matrix D € RIVIXI€l for this graph.

(You can select appropriate orderings for the vertices and edges.)

(b) Write a decomposition of D as
D=T[I M|

where T is the incidence matrix for a spanning forest. (Note you will need to order the nodes
and edges correctly for this form to work exactly as shown.)

(c) Write bases for R(D), R(D™), N(D), and N (D7),
ie. write bases for the range and nullspaces of D and D”.

(d) Prove the above are bases for the given spaces. You can make these arguments numerically

if you want.

(e) Generalize these basis constructions to arbitrary graphs and prove each basis is linearly inde-
pendent and spans the desired space. Note: there are eight proofs to do: linear independence
and span for each subspace.

Hints:. Probably the most compact characterization of linear independence (of the columns
of A) is the following

Ar =0, = z=0

(Think about why this is the case.). Many linear independence proofs become easier using
this definition. Feel free to ask for more hints in class.

3. Flow and Cut Spaces

(a) Edge Flow Space (nullspace of D)

Write a source-sink vector S € RVl that indicates 2 units of mass-flow entering the network
at each of the grey nodes and 2 units of mass exiting the network at each of the red and blue
nodes.
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Note that we can define the space of possible edge flows consistent with this source-sink
vector as

X:{x ‘ Dx =S5, xengl}
BY HAND: Rewrite the set X in the form

X:{x‘a:::E—FCZ, xER'g‘, zERlC‘}

ie. find a specific solution Z € RI¢! and a basis for the nullspace of D, C € RI€IXICl where |C]|
is the dimension of the cycle space.



(b) Edge Cut Space (range of D)
For each of the graphs given in the figure
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find vectors w € RV such that w” D gives signed indicator vectors for the edges highlighted
in red. Note that the elements of each w should be 1’s or 0’s (or —1’s are fine too).

4. Counting Walks

Consider the graph from above
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(a) Use powers of the adjacency matrix to count the number of 3 step, 4 step, and 10 step walks

from the grey nodes to the red and blue nodes respectively (ignoring edge direction).

(b) Use sums of powers of the adjacency matrix to count the number of walks from the grey
nodes to the red and blue nodes respectively with less than or equal to 10 steps (ignoring
edge direction).

5. Laplacian & Adjacency

(a) Show that for a d-regular graph the (undirected) Laplacian and adjacency matrices have the
same eigenvectors and each eigenvalue of the Laplacian has the form d — A where A is an
eigenvalues of the adjacency matrix.

6. Node and Edge Laplacians

(a) (Undirected) Laplacians can sometimes be thought of as "relative shape” matrices for the
columns and rows of the incidence matrix. Show that the node Laplacian L = DD” stays
the same if you rotate the rows and that the edge Laplacian L. = DT D stays the same if
you rotate the columns.



(b) Relabeling the nodes or edges of a graph corresponds to multiplying the incidence matrix on
the left or right by a permutation matrix. Show that relabeling the edges does not change
the node Laplacian L = DD” and that relabeling nodes does not change the edge Laplacian
L.=D"D.

(c) Show that the rank of L = DD” is the number of nodes minus the number of connected

components.

(d) For a graph with 10 nodes, 100 edges, and three connected components, what is the dimension
of the nullspace of L = DD”? What is the dimension of the nullspace of L, = DT D?

(e) Eigenvectors of the node Laplacian L = DD? can be thought of as vibration modes of the
nodes of the graph. If v is an eigenvector of L = DDT with eigenvalue X, show that DTv is
an eigenvector of L, = DT D also with eigenvalue \. (Hint: this construction is the heart of
the derivation of the SVD). If v can be interpreted as a vibration mode of a graph, what is

an interpretation for DTv (no wrong answers).

7. Laplacian Eigenvalues

We discussed how the (undirected) Laplacian is positive semi-definite with at least one eigenvalue
of 0 corresponding to an eigenvector of all 1’s, 1. Denote the ordered spectrum of the Laplacian
as

0 S )\Q(L) S T S )\max(L)

(a) Show that Ao(L) is strictly greater than 0 if and only if the graph has one connected compo-
nent.

There are useful characterizations of other eigenvalues based on optimization ideas. For example
Amax (L) can be written as

(Think about why this might be the case.)

We can also characterize \o(L) as

A(L) = min 'Lz
l|lz|l2=1
1T2=0
(b) Show that the maximum eigenvalue of the Laplacian, Amax(L), is greater than the maximum
degree of the graph.

(c) Show that

1
A(L)< min -
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(d) Show that for any graph with two nodes of minimum degree that are not adjacent, Ao(L) is
less than the minimum degree of the graph. (This is true in general, but harder to prove.)



