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Lyapunartheerent

a radially unbounded Lyapunov
function global

asymptotic
f co
strictexe stability

for Ap dynamics

I 4G x define V xu Y XU

THE XIALLG xD So
notStric

VCH is Not a Lyapunov function

Instead we call it a weak Lyapunov
function

Them LaSalle's Invariance Principle a generalizationofLyupthem

V weak Lyapunovfume SJ Vx n as1141 D

M largest invariantset
contained in xd II x o

Then
yin Kurt211

o as too

Now that we've
learned a new tool let's see

how

it applies to our problem



if G is
connected

Back to our AP dynamics

xEIR I 4 0 xer xtLeg x o span I

and as in if xHespm 2 a n span 1

This by La
Salle'sInvariance Principle

H span I

whatabout the DAP dynamics

XE L D to define xen KXI H

V H e xTH X t
XIALED ÉH

notSmm

ByGertgurian
diskthem so

not strictly co a weak Lyapunovfund

If D is strongly connected then the largest invariant

set in

XGIR ICH O x I XTLCD LID T x o

is the null space of Lep which is span I why

By LaSalle's Env Prin x t spun 13



what if D is not strongly
connected yet contains a

rooted out branching

Redefine a discrete weak lyapunov function
as

2K Max Zich min Zick

inal ie191

where Zen x Sk for some 870

see ch 4.1.2 in meshahi10

Switched Agreement protocol

consider finitely many strongly
connected digraphs

switchedAP Di Dr

suppose I LCD x with iehi in

This is a switched linen system
and describedby

Differential inclusion Ichef 2 Di 418 ictus its

Considering Vixen Ka xu weget

F t GE XIALLD ta ioft H



where each dynamic vanishes on

Fi or I XTILLP.ltLIDit x

But as each D is strongly
connected

Fi span 1 for every iell in

Me call VH here a common weak Lyapunov
function

for the switched agreement
protocol

A generalization of Lasalle's Env
principle

ThemA9 in meshahito

still implies that xu span 1

Thm i suppose V is a common weakLyapunovfunction ageneralization

ofLaSalle's
for the switched system

ICH Fog NH
6 t ES is ok Env Prine

I switching mechanism

let m he the largestinvariantsetundermade i

thatis contained in

xer CLIFF x o

If Mi Mjandforall i jeS then X4 it as ten
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Edgemont
y ites

Xe FIX
Assign a state to each edge

naif
it in natan

I amarbitrychoice of
J orientation

ofedges

Iet DG x'G
DCG LG XH

DGTDG DCGTxH hehReet

Edge agreement proved on G
Xe t Le G held

If G is connected then

he so xe span I

In this case we have shown that xx
spank13

which implies that tea o



Role of cycles in Edge Ap

Recall the decomposition of the
incidence matrix upto edgerelabelig

MCG DCG DLG

T To the remainingedges
incidencematrix of

creating cycles
theunderlying spanning nee

now also decompose Xelt accordingly to tech I
th

Lea nia
not i it n'cattneae

neatneat Le Gc
t

edgelapofthetheremaining
graph

and this the edge dynamics decomposesas

I
ITCH Le G X H DGt D Gc X

Ich Le Gc X D Gc D Gt X t

But we know that Xie R'at and any edge in
thecycle

can be constructed using the ones in the spanning thee
so

Is there a redued model for edgeAp



Recall that

DCG DAT Dad e DCG E M DAT R

where DGc D Gt My eachcolumnof M sayshow t traverse
the spanningtree to construct an

edge in Gc

i e by construction note that x'It It M why

Therefore

ITCH Le G X CH DGt D Gc X

LeCGT NIH DGtfDat Mack

LeGt AH man

Le Gy Xt s MmtXt t

Le Gt I mnt X H

Le Gt RRTX Ct

So EdgeAP follows

theindependentspanningtree dyn.IT E LeCGtRRTXTH

the lin depen cycle dyn Xc t e MtXT t



Lastly we can interpret Edge AP as a feedback

system between the spanning treeedges and cycleedges

Yu Le G AH Dat Dad II
Internallystable plant

I
U I q.IT f xt nt Y 3

idk

DLG DIG a

static feedback


