Pólya's Problem Solving Method

Shahriar Talebi

June, 2025

Introduction

George Pólya was a pioneering mathematician whose legacy includes an influential approach to solving problems effectively. In his book *How to Solve It*, he offered a timeless, structured framework that helps learners and thinkers across disciplines tackle complex problems with clarity and logic. This document presents a thoroughly paraphrased and expanded version of his method, focusing on practical understanding and application.

1. Grasping the Problem Fully

Before attempting to solve a problem, it is essential to gain a clear and accurate understanding of what the problem is actually asking.

- Clarify what you're trying to find: Pinpoint the unknown. What is the core question you need to answer? Understanding this sets a clear target for your efforts.
- **Take inventory of what is given:** Collect and list all the provided facts, data, relationships, and constraints. These are your tools and boundaries.
- Assess the adequacy of the information: Is the provided data enough to proceed? Sometimes, conditions are too vague, too restrictive, or even contradictory. Analyzing this helps determine the right direction.
- Visualize whenever possible: If the problem involves shapes, positions, quantities, or change over time, drawing a diagram or sketch can reveal hidden patterns and relationships.
- **Rewrite the problem in simpler terms:** Rephrasing in your own words forces you to process and internalize the problem, helping to uncover its structure and make implicit details explicit.

2. Creating a Strategy for the Solution

Once the problem is fully understood, the next step is to build a logical bridge from what you know to what you want to find.

• Link known facts to the unknown: Consider how the given information can be combined or manipulated to reveal the unknown. Sometimes, intermediate steps or constructs are required.

- **Recall related problems:** Try to remember a similar problem you've solved or studied. It might offer a method, pattern, or shortcut that can help.
- Draw on general mathematical tools: Think about applicable formulas, identities, principles, or theorems. For example, if you're dealing with a triangle, properties from geometry might be useful.
- **Break it down:** Divide the problem into smaller parts. Solving a simpler sub-problem might provide insight or a stepping stone toward solving the whole.
- **Consider variations of the problem:** If the original version is too difficult, modify it. Try solving a more specific, general, or analogous version to gain perspective.
- Experiment with modifying the data or unknowns: Adjust the values or assumptions temporarily to explore new possibilities. This experimentation can reveal new paths to a solution.

3. Putting the Plan into Action

Now that you have a strategy, it's time to implement it carefully and systematically.

- Follow the steps with discipline: Proceed step by step as planned. Stay focused and do not rush.
- Verify as you go: After each step, check whether it logically follows from the previous. This prevents error accumulation and helps maintain a correct path.
- **Be adaptable:** If you find that a step leads to a dead end or contradiction, reevaluate the plan. Be willing to backtrack and revise as needed.

4. Reflecting on the Outcome

Once a solution has been found, don't stop there. Take time to review and learn from the experience.

- Check your solution's validity: Reinsert your answer into the original conditions and verify if it makes sense in the full context.
- Rethink the path you took: Could there be a more elegant or efficient method? Looking back may improve your technique.
- **Explore alternative methods:** Trying a different approach might deepen your understanding or uncover new insights.
- Ask what this teaches you: Identify what principles, tools, or techniques were helpful, and consider where else they might apply.

5. Extending the Problem (An Additional Step)

Pólya's framework is enriched by a fifth step: generalization and extension.

- Generalize the problem: Can the solution method be applied to a broader class of problems? Try identifying patterns that make this possible.
- Look for structural insights: Understanding the underlying structure often reveals why a method works and helps in transferring that method to other contexts.
- **Pose new questions:** What variations or extensions can be derived? Asking "What if...?" opens the door to further exploration and discovery.

Conclusion

Solving problems is not just about finding answers—it's about developing habits of thought that promote clarity, adaptability, and critical reasoning. Pólya's method encourages a disciplined yet flexible approach, helping us think deeply and work creatively across a wide range of intellectual challenges.