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Abstract: Future mechanical and aerospace systems must operate both efficiently and safely in 

dynamic, uncertain environments. Although advances in AI, sensing, and actuation offer new av-

enues for autonomy, existing methods often struggle with real-time constraints, limited data, and 

the need for stringent safety guarantees. This talk introduces a Trustworthy AI framework that 

integrates geometric methods, control theory, and machine learning to address these challenges in 

safety-critical applications. 

Specifically, I will highlight Geometric Policy Optimization (Geometric PO), a novel technique 

that leverages underlying problem structure to enhance computational and learning efficiency from 

input–output data, provide performance and stability guarantees, and accommodate policy con-

straints. I will demonstrate its capabilities—using an estimation–control duality approach—

through learning optimal Kalman filtering, with an application to inferring an aircraft’s wing–wave 

behavior under unknown gust disturbances. 

Additionally, I will introduce a risk-aware control framework that ensures resilience against 

extreme events modeled by heavy-tailed distributions. Learning such risk-aware controllers under 

heavy-tailed process noise is enabled by a risk-constrained extension of Geometric PO. By syn-

thesizing learning, control, and geometry, this integrated approach advances the foundation for 

safe, efficient, and resilient autonomy in next-generation safety-critical systems. 
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