Shahriar Talebi (Harvard University)

- ❖ How to efficiently infer from partially observable systems with **unknown noise** or **highdim measurements**? [ACC '23, NeurIPS '23]
	- **Optimal MSE estimation without noise covariances** Q and R:

 $\min_L\ J_T^{\mathrm{est}}(L):=\mathrm{E}\|y(T)-\hat{y}_L(T)\|^2$

02 - Learning and Inference

● The invariance of the **Patterned Monoid** under Lyapunov eq: $PM(r \times n, \mathbb{R}) \triangleq \{ \mathbf{N}_r \in GL(rn, \mathbb{R}) \mid A \in GL(n, \mathbb{R}) \cap \mathbb{S}^n, B \in \mathbb{S}^n \}$ $\mathbf{N}_r =$

Theorem: if A is stable and $P = A^T P A + Q$, then

● Filtering policy optimization via **Estimation-Control duality**:

$$
L_{\text{Kalman}}(A, H, Q, R) \equiv K_{\text{LQR}}(A^{\intercal}, H^{\intercal}, Q, R, H^{\intercal}H)^{\intercal}
$$

$$
L^+ = L - s_L \nabla_L \widehat{J}_T^{\text{est}}(L)
$$

❖ SysID from high-dimensional observation (applications in meta-learning): [ICML '24]

● **High-dim SysID**:

 $\hat{\Phi}_C \leftarrow \text{Col-approx}(\{y_t\})$ $\hat{A}, \ \hat{B}, \ \hat{\Phi}_{C}^{\mathsf{T}}C \leftarrow \text{Ho-Kalman}(\{u_t, \hat{\Phi}_{C}y_t\})$ $\hat{C} \leftarrow \hat{\Phi}_C \hat{\Phi}_C^\intercal C$

• Complexity $\mathcal{O}(d_y \cdot \text{poly}(d_x, d_u)/\epsilon^2) \xrightarrow{reduces} \mathcal{O}([d_y + \text{poly}(d_x, d_u)]/\epsilon^2)$ "optimal"

 \rightarrow Time-varying, partially unknown settings

 \rightarrow Optimal SysID through nonlinear high-dim observations

- Policy optimization via sub-network data of homogeneous agents
	- 1. PO on $G_{d,learn}$ using the invariance of $PM(r \times n, \mathbb{R})$
	- 2. Propagate policies to G using robust control techniques
	- 3. Guaranteed near-optimal performance

04 - Learning in Multi-agent Systems

❖ How to utilize **algebraic structures** of interconnections for MARL? [CDC '21, TAC '24]

 $P \in PM(r \times n, \mathbb{R}) \iff Q \in PM(r \times n, \mathbb{R})$

❖ Sub-network **distributed games** [CDC '19]

 $\int \min_{x_A} f_A(x_A, x_B) = \sum_i f_{A,i}(x_A, x_B)$ ream A \int ream A \int ream B $\min_{x_B} f_B(x_A, x_B) = \sum_i f_{B,i}(x_A, x_B)$

● "Team-based dual averaging":

 $\ell\in\{A,B\}: \begin{cases} z_{\ell,i}(t+1) &= \sum_{j\in\mathcal{N}_{\ell,i}} P_{ij} z_{\ell,j}(t) + g_{\ell,i}(t)\ x_{\ell,i}(t+1) &= \Pi_{\mathcal{X}_\ell}^\psi\big(-z_{\ell,i}(t+1),\alpha(t)\big) \end{cases}.$

- No-regret guarantee $\mathcal{R}_{\ell,i}(T) = \mathcal{O}(\sqrt{T}\log(T)/\sqrt{1-\sigma_2(P)})$
- \rightarrow MARL in heterogeneous, non-cooperative settings

❖ **Noninferior-Nash** Strategies [CDC '19, ECC '18]

- \bullet LQ game $\{P_i\}$ vs E:
	- 1. Non-coop Nash
- 2. Team Nash
- 3. Greedy Nash
- Finite time-capture if $\sum_i Q_{P_i} > -Q_E$: $t \geq \mathcal{O}(-\log \epsilon) \implies ||x_t|| \leq \epsilon$

* Talebi, Alemzadeh, & Mesbahi, (2024). Data-driven structured policy iteration for homogeneous distributed systems. IEEE Trans on Automatic Control (**TAC**), 69(9), 5979–5994 * Talebi, Alemzadeh, & Mesbahi, (2021). Distributed model-free policy iteration for networks of homogeneous systems. 60th IEEE Conf on Decision and Control (**CDC**) , 6970–6975 * Talebi, Alemzadeh, Ratliff, & Mesbahi, (2019). Distributed learning in network games: A dual averaging approach. 58th IEEE Conf on Decision and Control (**CDC**), 5544–5549 * Talebi, Simaan, & Qu, (2019). Decision-making in complex dynamical systems of systems with one opposing subsystem. 18th European Control Conf (**ECC**), 2789–2795 * Talebi, Simaan, & Qu, (2019). Cooperative design of systems of systems against attack on one subsystem. 58th Conf on Decision and Control (**CDC**), 7313–7318

Harvard John A. Paulson **School of Engineering** and Applied Sciences

↠ **Distributional policy optimization** for stochastically dominant policies $g(X_t, U_t) \succeq_{SD} g(X_t^{\text{baseline}}, U_t^{\text{baseline}})$

05 - Online Stabilization

❖ Can we achieve real-time **online stabilization** and control for unstable systems? [CDC '20, TAC '22]

● **Riemannian geometry** of stabilizing policies for LTI systems $\langle V_K, W_K \rangle_K \triangleq \text{tr}[V_K^{\mathsf{T}} W_K Y_K], \quad Y_K = \text{Lyap}(A_K, \Sigma)$

$$
\|Av_t\| \propto \left[\frac{\sigma_1(A)}{t}\right]^t
$$

 $B \quad A \quad \therefore \quad \vdots$

 \vdots \vdots \vdots B

 \cdots $\begin{array}{cc} B & A \end{array}$

* Talebi, Alemzadeh, Rahimi, & Mesbahi, (2020). Online regulation of unstable linear systems from a single trajectory. IEEE Conference on Decision and Control (**CDC**), 4784–4789 * Talebi, Alemzadeh, Rahimi, & Mesbahi, (2022). On Regularizability and its application to online control of unstable LTI systems. IEEE Trans on Automatic Control (**TAC**), 67(12), 6413–6428

03 – Ergodic-risk Control

❖ How to manage long-term cumulative risks under **heavy-tailed noise**, while maintaining **stability** and **performance**? [ACC '25(sub), SICON '25(sub)]

● **Ergodic-risk** criteria:

$$
C_t := g(X_t, U_t) - \mathbb{E}[g(X_t, U_t)|\mathcal{F}_{t-1}]
$$

$$
\tfrac{1}{\sqrt{t}} \textstyle\sum_{s=0}^t C_s \xrightarrow{d} C_\infty
$$

- **Theorem** (using ergodic theory):
- a. The closed-loop system is $(|| \cdot ||^4 + 1)$ -uniformly ergodic if
	- 1) the controller is stabilizing, and
	- 2) noise has finite fourth moment.
- b. The Functional CLT holds.
- Ergodic-risk COCP:

 $\min J_{\rm LQR}(U)$ s.t. $X_{t+1} = AX_t + BU_t + HW_{t+1}$, $\{U_t\}$ admissible $\rho(C_{\infty}) \leq \varrho_0$, ρ risk measure

● **(Strong duality)** Primal-dual PO balancing performance and risk

* Talebi, & Li, (2024). Uniform Ergodicity and Ergodic-Risk Constrained Policy Optimization. arXiv Preprint ArXiv:2409.10767 (SIAM **SICON** submitted) * Talebi, & Li, (2024). Ergodic-risk constrained policy optimization: The linear quadratic case. 2025 American Control Conference (**ACC** submitted)

- (A, B) is **Regularizable** if $\text{Proj}_{\mathcal{R}(B)} \perp A$ is stable, "a **geometric criterion** characterizing finite-time stabilization property"
- **Theorem:** The certainty-equivalent minimum-energy control a. stabilizes $(A, B) \iff (A, B)$ is regularizable, b. generates informative data
- Performance guarantees: $\frac{||x_{t+1}||}{||x_0||} \propto M_t(A)$
- The "instability number of order t":
	- $M_t(A) \triangleq$ $\sup \qquad \Vert Av_{1}\Vert \, \Vert Av_{2}\Vert \; \, \cdots$ $\{v_1,...,v_t\} \in \mathcal{O}_t^n$

 \rightarrow Output-feedback and distributed stabilization

 \rightarrow Geometric classification of control-affine systems

 $[V_K] = -\textnormal{grad}_K f \, .$ $Y_K\|\,\lambda_{\max}(Y_K)/\lambda_{\min}(\Sigma)\|$

❖ How to utilize **the geometry of policies** for learning efficiently under constraints? [CDC '22, TAC '24]

● Riemannian Gradient/Newton Descent for constrained LQR

•
$$
\text{RGD}/\text{RND}
$$
:
$$
\begin{cases} V_K = -\text{grad}_K f & \text{or } \text{Hess } f[V] \\ K^+ = \mathcal{R}_K(s_K V_K), & s_K^{-1} \propto ||V|| \end{cases}
$$

❖ **Geometric consensus** to RCM on bi-invariant Lie groups: [CDC '23, CCTA '23]

$$
\begin{aligned} \mathbf{f}(x) &:= \tfrac{1}{2} \sum_{i=1}^{N} \mathrm{d}(x_i, z_i)^2 \\ \varphi(x) &:= \sum_{\{i,j\} \in E} \mathrm{d}(x_i, x_j)^2 \\ \text{\textcolor{red}{\bullet}} \quad \mathbf{RCM:} \left\{ \begin{aligned} \dot{x} & = -\nabla \varphi(x) - dL_x v, \\ \dot{w} & = \mathbf{L} v \\ v & = -w + dL_{x^{-1}} \nabla f(x) \end{aligned} \right. \end{aligned}
$$

 \rightarrow Generalization to robust, decentralized policies

 \rightarrow Interactions with the geometry of stable manifolds

01 - Geometry and Policies

* Talebi & Mesbahi, M. (2022). Riemannian constrained policy optimization via geometric stability certificates. 61st IEEE Conf on Decision and Control (**CDC**), 1472–1478 * Talebi & Mesbahi, M. (2024). Policy optimization over submanifolds for linearly constrained feedback synthesis. IEEE Transactions on Automatic Control (**TAC**), 69(5), 3024–3039 * Kraisler, Talebi, & Mesbahi, (2023). Distributed consensus on manifolds using the Riemannian center of mass. 2023 IEEE Conf on Control Technology and Applications (**CCTA**), 130–135 * Kraisler, Talebi, & Mesbahi, (2023). Consensus on Lie groups for the Riemannian center of mass. 62nd IEEE Conf on Decision and Control (**CDC**), 4461–4466